Keywords: energy (312) solar fuels (77) HZB own research (99)

Science Highlight    04.04.2019

Catalyst research for solar fuels: Amorphous molybdenum sulphide works best

The SEM shows Molybdenum sulfide deposited at room temperature.
Copyright: HZB

Experimental data show, how catalytically active nanoislands of MoS2 are formed.
Copyright: HZB

Efficient and inexpensive catalysts will be required for production of hydrogen from sunlight. Molybdenum sulphides are considered good candidates. A team at HZB has now explained what processes take place in molybdenum sulphides during catalysis and why amorphous molybdenum sulphide works best. The results have been published in the journal ACS Catalysis.

Sunlight not only can be used to generate electricity, but also hydrogen. Hydrogen is a climate-neutral fuel that stores energy chemically and releases it again when needed, either directly via combustion (where only water is produced) or as electrical energy in a fuel cell. But to produce hydrogen from sunlight, catalysts are needed that accelerate the electrolytic splitting of water into oxygen and hydrogen.

Molybdenum sulphide layers explored

 One particularly interesting class of catalysis materials for hydrogen generation are the molybdenum sulphides (MoSx). They are considerably cheaper than catalysts made of platinum or ruthenium. In a comprehensive study, a team led by Prof. Dr. Sebastian Fiechter at the HZB Institute for Solar Fuels has now produced and investigated a series of molybdenum sulphide layers. The samples were deposited at different temperatures on a substrate, from room temperature to 500 °C. The morphology and structure of the layers change with increasing deposition temperature (see SEM images). While crystalline regions are formed at higher temperatures, molybdenum sulphide deposited at room temperature is amorphous. It is precisely this amorphous molybdenum sulphide deposited at room temperature that has the highest catalytic activity.

Amorphous MoSx layers emit H2S initially

A catalyst made of amorphous molybdenum sulphide not only releases hydrogen during electrolysis of water, but also hydrogen sulphide gas in the initial phase. The sulphur for this had to come from the catalyst material itself, and astonishingly – this process improves the catalytic activity of the molybdenum sulphide considerably. Fiechter and his team have now taken a close look at this and are proposing an explanation for their findings.

Spectrocopic methods show what happens

They investigated amorphous molybdenum sulphide samples used as catalysts in water splitting using various spectroscopic methods, including in situ Raman spectroscopy. These measurements show that nanocrystalline regions of molybdenum disulphide (MoS2) form over time in amorphous molybdenum sulphide samples as a result of sulphur escaping from molybdenum clusters. At the same time, less and less hydrogen sulphide is produced, so that hydrogen production becomes dominant.

Islands of nanocrystalline MoS2

“We can deduce from the data that low-sulphur areas with islands of nanocrystalline MoS2 form as a result of the sulphur escaping. The islands act as catalytically active particles”, explains Fanxing Xi, who carried out the measurements as part of her doctoral work. “These insights can contribute to further improving the catalytic activity and stability of this promising catalyst for hydrogen generation in the water-splitting process, and coupling the material to an electrolyser operating solely on sunlight”, said Fiechter.

 

 

To the publication in ACS Catalysis (2019): Structural Transformation Identification of Sputtered Amorphous MoSx as an Efficient Hydrogen-Evolving Catalyst during Electrochemical Activation; Fanxing Xi, Peter Bogdanoff, Karsten Harbauer, Paul Plate, Christian Höhn, Jörg Rappich, Bin Wang, Xiaoyu Han, Roel van de Krol, and Sebastian Fiechter

Doi: 10.1021/acscatal.8b04884

arö


           



You might also be interested in
  • <p>The idea: during summer, a module with photovoltaic and catalytic materials is splitting molten ice into hydrogen (H<sub>2</sub>) and oxygen. The H<sub>2</sub> is stored.</p>NEWS      22.05.2019

    Energy for Antarctica: solar hydrogen as an alternative to crude oil?

    Volkswagen Foundation funds feasibility study by HZB experts in artificial photosynthesis

    The sun shines at the South Pole as well – and in summer almost around the clock. Instead of supplying research stations in the Antarctic with crude oil for producing the electricity and heating they need, solar hydrogen could be produced from sunlight in summer as an alternative. Hydrogen has a high energy density, is easy to store, and can be used as fuel when needed later without polluting the environment. An intriguingly simple idea - but one that raises many questions. Matthias May (HZB) and Kira Rehfeld (Heidelberg University) now want to examine how feasible this kind of solar fuel generation might be in Antarctica. The project is receiving financial support from the Volkswagen Foundation. [...]


  • <p>Bassi presented results on new phases in the quaternary Fe-Ti-W-O system for application as photoelectrocatalyst in light-assisted water splitting.</p>NEWS      20.05.2019

    Posterprize for HZB postdoc Prince Saurabh Bassi

    Dr. Prince Saurabh Bassi was awarded the poster prize at “International Bunsen-Discussion-Meeting on Fundamentals and Applications of (Photo) Electrolysis for Efficient Energy Storage”. He is a postdoctoral fellow working with Prof. Sebastian Fiechter in the Institute for Solar Fuels. [...]


  • <p>HZB-Teams are exploring and developing new technologies for perovskite based solar cells in the innovation lab HySPRINT.</p>NEWS      16.05.2019

    LAUNCH OF EPKI: European Perovskite Initiative for the development of Perovskite based solar technology

    Perovskite based solar cells have made tremendous progress over the last decade achieving lab-scale efficiencies of 24.2% early 2019 in single-junction architecture and up to 28% in tandem (perovskite associated with crystalline silicon), turning it into the fastest-advancing solar technology to date. With the HySPRINT project and the recruitment of highly talented young scientists, Helmholtz-Zentrum Berlin has built up a considerable research capacity in the field of perovskite materials in recent years and is participating in the European Perovskite Initiative EPKI that has now been launched. [...]




Newsletter