Ultraschneller Magnetismus: Elektron-Phonon-Wechselwirkungen an BESSY II analysiert

Nach Anregung durch Synchrotronstrahlung (grün) emittiert Nickel Röntgenlicht (gelb). Die Anzahl der emittierten Photonen nimmt jedoch ab, wenn sich die Temperatur von Raumtemperatur (links) auf 900 °C erhöht (rechts).

Nach Anregung durch Synchrotronstrahlung (grün) emittiert Nickel Röntgenlicht (gelb). Die Anzahl der emittierten Photonen nimmt jedoch ab, wenn sich die Temperatur von Raumtemperatur (links) auf 900 °C erhöht (rechts). © HZB

Wie schnell kann ein Magnet seine Ausrichtung ändern und was sind die mikroskopischen Mechanismen? Diese Fragen sind für die Entwicklung von Datenspeichern und Computerchips von größter Bedeutung. Jetzt ist es einem HZB-Team am BESSY II erstmals gelungen, den wichtigsten mikroskopischen Prozess des ultraschnellen Magnetismus experimentell zu beobachten. Die zu diesem Zweck entwickelte Methodik kann auch zur Untersuchung von Wechselwirkungen zwischen Spins und Gitterschwingungen in Graphen, Supraleitern oder anderen (Quanten-)Materialien verwendet werden.

Wechselwirkungen zwischen Elektronen und Gitterschwingungen (Phononen) gelten als die treibende Kraft hinter ultraschnellen Magnetisierungs- oder Entmagnetisierungsprozessen (Spin-Flips). Bisher war es jedoch aufgrund des Fehlens geeigneter Methoden nicht möglich, solche ultraschnellen Prozesse im Detail zu beobachten.

Neue Methode an BESSY II

Nun hat ein Team um Prof. Alexander Föhlisch eine neuartige Methode entwickelt, um erstmals die Spin-Flip-Streurate, die durch Elektron-Phonon-Wechselwirkungen getrieben wird, in zwei Modellsystemen experimentell zu bestimmen: in ferromagnetischems Nickel und nichtmagnetischem Kupfer. 

Nach Anregung Analyse der Emission

Dazu wurde die Röntgen-Emissionsspektroskopie (XES) bei BESSY II eingesetzt. Röntgenstrahlung regt dabei zunächst Elektronen in den Proben (Ni oder Cu) an, so dass „Löcher“ entstehen, die durch Valenzelektronen gefüllt werden können. Wenn Valenzelektronen diese Plätze besetzen, geben sie Licht ab; diese Emission kann dann analysiert werden. Die Proben wurden bei verschiedenen Temperaturen gemessen, um die Auswirkungen der zunehmenden Gitterschwingungen (Phononen) zu beobachten.

Spin-Flip-Streurate hängt nur in Nickel von Phononen ab

Mit steigender Temperatur zeigte ferromagnetisches Nickel einen starken Rückgang der Emissionen. Diese Beobachtung passt gut zu der theoretischen Simulation von Prozessen in der elektronischen Bandstruktur von Nickel nach Anregungen: Durch die Erhöhung der Temperatur und damit der Phononenpopulation steigt die Streurate zwischen Elektronen und Phononen. Gestreute Elektronen stehen für den Zerfall nicht mehr zur Verfügung, was zu einer Abnahme der Lichtemission führt. Wie erwartet, hatten beim diamagnetischen Kupfer die Gitterschwingungen kaum Einfluss auf die gemessenen Emissionen.

"Wir glauben, dass unser Artikel nicht nur für Spezialisten auf den Gebieten Magnetismus, Festkörperphysik und Röntgenemissionsspektroskopie von großem Interesse ist, sondern auch für eine breite Leserschaft, die neugierig auf die neuesten Entwicklungen in diesem dynamischen Forschungsgebiet ist", sagt Dr. Régis Decker, Erstautor und Postdoc im Föhlisch-Team. Das Verfahren kann auch zur Analyse von ultraschnellen Spin-Flip-Prozessen in neuartigen Quantenmaterialien wie Graphen, Supraleitern oder topologischen Isolatoren eingesetzt werden.

Scientific Reports, 2019: “Measuring the atomic spin-flip scattering rate by x-ray emission spectroscopy”. Régis Decker, Artur Born, Robby Büchner, Kari Ruotsalainen, Christian Strahlman, Stefan Neppl, Robert Haverkamp, Annette Pietzsch, and Alexander Föhlisch

DOI: 10.1038/s41598-019-45242-8

arö


Das könnte Sie auch interessieren

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.