Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

<p class="MsoCommentText">Die Fotomontage zeigt eine Probe aus reinem Niob (links) und eine Probe, die mit Nb<sub>3</sub>Sn beschichtet wurde (rechts).

Die Fotomontage zeigt eine Probe aus reinem Niob (links) und eine Probe, die mit Nb3Sn beschichtet wurde (rechts). © HZB

Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet.

Zurzeit ist Niob das Material der Wahl, um supraleitende Hochfrequenzkavitäten zu bauen. So werden sie für Projekte wie bERLinPro und BESSY-VSR eingesetzt, aber auch bei Freien Elektronenlasern wie dem XFEL oder dem LCLS-II.

Beschichtung verspricht Einsparungen

Doch eine Beschichtung mit Niobzinn (Nb3Sn) könnte zu deutlichen Verbesserungen führen. Denn supraleitende Hochfrequenzkavitäten aus Niob müssen bei 2 Kelvin (-271 Grad Celsius) betrieben werden, was aufwändige Kryotechnik erfordert. Durch eine Beschichtung mit Nb3Sn könnten Kavitäten dagegen auch bei 4 statt 2 Kelvin betrieben werden und zudem möglicherweise höhere elektromagnetische Felder aushalten, ohne dass die Supraleitung zusammenbricht. In Zukunft könnte das bei großen Beschleunigern Millionen Euro in Bau- und Stromkosten sparen, da der Aufwand für die Kühlung deutlich geringer ist.

Experimente in USA, Kanada, Schweiz und HZB

Ein Team um Prof. Dr. Jens Knobloch, der das SRF-Institut am HZB leitet, hat nun in Zusammenarbeit mit Kollegen aus den USA, Kanada und der Schweiz Tests mit supraleitenden Proben durchgeführt, die an der Cornell University, USA, mit Nb3Sn beschichtet wurden. Die Experimente fanden am Paul-Scherrer-Institut, Schweiz, am TRIUMF, Kanada, und am HZB statt.

Beschichtete Probe hält mehr aus

„Wir haben die kritischen Magnetfeldstärken von supraleitenden Nb3Sn-Proben in statischen und Hochfrequenz-Feldern gemessen“, sagt Sebastian Keckert, Erstautor der Studie, der im Team von Knobloch promoviert. Durch die Kombination verschiedener Messverfahren konnten sie die theoretische Vorhersage bestätigen, dass das kritische Magnetfeld von Nb3Sn in Hochfrequenz-Feldern höher ist als das für statische Magnetfelder. Allerdings sollte das beschichtete Material im Hochfrequenz-Feld noch ein sehr viel höheres kritisches Magnetfeld aufweisen.

Somit haben die Tests auch gezeigt, dass der aktuell verwendete Beschichtungsprozess zur Herstellung von Nb3Sn weiterentwickelt werden könnte, um den theoretischen Werten noch näher zu kommen.

 

Die Arbeit wird auf dem Cover der Fachzeitschrift „Superconductor Science and Technology“ , (2019), angezeigt. Critical fields of Nb3Sn prepared for superconducting cavities; S. Keckert, T. Junginger, T. Buck, D. Hall, P. Kolb, O. Kugeler, R. Laxdal, M. Liepe, S. Posen , T. Prokscha, Z. Salman, A. Suter and J. Knobloch

doi:10.1088/1361-6668/ab119e

arö

Das könnte Sie auch interessieren

  • HZB erhält Fördermittel, um Innovationen rascher nutzbar zu machen
    Nachricht
    23.03.2023
    HZB erhält Fördermittel, um Innovationen rascher nutzbar zu machen
    Die Helmholtz-Gemeinschaft hat drei neue Innovationsplattformen ausgewählt, die nun gefördert werden. An zweien davon ist das HZB beteiligt: Die Innovationsplattform zu Beschleunigertechnologien HI-ACTS soll moderne Beschleuniger für vielfältige Anwendungen öffnen, während die Innovationsplattform Solar TAP neue Ideen aus den Laboren der Photovoltaikforschung rascher in die Anwendung bringen soll. Insgesamt erhält das HZB aus Mitteln des Pakts für Forschung und Innovation in den kommenden drei Jahren 4,2 Millionen Euro an Zuwendungen.

  • Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Science Highlight
    20.03.2023
    Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Mit Sonnenlicht lässt sich grüner Wasserstoff in photoelektrochemischen Zellen (PEC) direkt aus Wasser erzeugen. Bisher waren Systeme, die auf diesem 'direkten Ansatz' basieren, energetisch nicht wettbewerbsfähig. Die Bilanz ändert sich jedoch, sobald ein Teil des Wasserstoffs in PEC-Zellen in-situ für erwünschte Reaktionen genutzt wird. Dadurch lassen sich wertvolle Chemikalien für die chemische und pharmazeutische Industrie produzieren. Die Zeit für die Energie-Rückgewinnung des direkten Ansatztes mit der PEC-Zelle kann damit drastisch verkürzt werden, zeigt eine neue Studie aus dem HZB.
  • Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Science Highlight
    16.03.2023
    Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.