Stellungnahme des FVEE: Ausbaudeckel für Photovoltaik behindert erfolgreiche Klimapolitik

© pixabay

Der im EEG von 2012 festgelegte Stopp der Einspeisevergütung durch den 52 GW-Deckel läuft dem erforderlichen massiven Ausbau der Photovoltaik und damit auch den deutschen Klimaschutzzielen diametral entgegen. Stattdessen sollte PV-Strom, der nicht lokal verbraucht werden kann, auch nach Erreichen von 52 GW installierter Leistung ins Netz eingespeist und vergütet werden. Der Forschungsverbund Erneuerbare Energien (FVEE) empfiehlt daher, so schnell wie möglich eine Anschlussregelung zu finden, die den für die Klimaschutzziele erforderlichen Solarausbau sichert.

In Studien zur Transformation des deutschen Energiesystems haben die Mitgliedseinrichtungen des ForschungsVerbunds Erneuerbare Energien nachgewiesen, dass die Klimaschutzziele der Bundesregierung nur mit einem konsequenten Ausbau von Windkraft und Photovoltaik, zu erreichen sind (siehe Literaturnachweis 1). Laut Bundesregierung soll der Anteil Erneuerbarer Energien bis 2030 bei 65 Prozent des Bruttostromverbrauchs liegen. Photovoltaik und Windkraft werden dazu den größten Beitrag leisten, der Ausbau von Biomasse und Geothermie kann u.a. den Speicherbedarf wesentlich senken.

Je nachdem, welches modellbasierte Szenario zugrunde gelegt wird, werden bis 2050 etwa 120 bis zu 500 GW an installierter Photovoltaik-Leistung benötigt, um den Energiebedarf in den unterschiedlichen Sektoren überwiegend aus erneuerbaren Energieträgern zu decken. Bei einem mittleren Ausbauziel von 300 GW bis zum Jahr 2050 müssen im Mittel jährlich etwa 9 GW zugebaut werden.

Wenn der 52 GW-Deckel beim aktuellen Ausbautempo etwa Anfang 2020 erreicht wird, führt dies ohne eine rechtzeitig getroffene Anschlussregelung zur Verunsicherung von Investoren, Industrie und Solarhandwerk und damit zur Stagnation. Die Ergebnisse von Modellrechnungen deuten darauf hin, dass der jährliche Bruttozubau außerhalb des Ausschreibungssystems (v.a. Dachanlagen) nach dem Erreichen des 52 GW-Deckels auf eine Größenordnung von rund 1 GW pro Jahr absinkt (siehe Literaturnachweis 2). Zudem reduziert der PV-Deckel die Partizipation der Bürger an der Energiewende. Gerade die Photovoltaik-Dachanlagen haben eine große Akzeptanz.

Auch aus ökonomischer Sicht besteht keine Existenzberechtigung mehr für eine Deckelung. Durch das monatliche Absinken der Einspeisevergütung entsprechend §49 EEG wird die Vergütung von neu installierten Anlagen ab den 2020er Jahren die Strompreise kaum noch beeinflussen. In den letzten 10 Jahren sind die Systempreise für schlüsselfertige Photovoltaik-Anlagen um 75 Prozent gesunken. Bei einer Lernrate von 15 Prozent werden die Stromgestehungskosten ab 2030 unter 4,7 (Dachanlagen) beziehungsweise 2,41 €cent/kWh (Freiflächenanlagen) fallen. Sogar kleine Dachanlagen werden Strom dann günstiger erzeugen als neu errichtete Steinkohle- oder Gas-und Dampf-Kraftwerke. Bis dahin werden Photovoltaik-Dachanlagen aber weiterhin eine ordnungspolitische Flankierung durch das EEG benötigen, damit der für den Klimaschutz notwendige Ausbau realisiert werden kann: Strom, der nicht lokal verbraucht werden kann, muss ins Netz eingespeist und vergütet werden.

Über den weiteren Zubau von Dach-Photovoltaik hinaus muss auch die Integration von Solarmodulen in die bebaute Umwelt stärker vorangetrieben werden, weil das nicht nur dem Klimaschutz dient sondern auch eine große Chance für eine Renaissance der deutschen und europäischen Photovoltaik-Branche ist: hocheffiziente, ästhetisch anspruchsvolle Anwendungen sind kein Markt für importierte Massenprodukte. Die Forschungsinstitute entwickeln und demonstrieren Lösungen, bei denen Module erfolgreich in Fassaden, Fahrzeugen, Straßen oder über landwirtschaftlichen Flächen installiert werden. Im Zuge der Neugestaltung des Gesetzes für den Ausbau erneuerbarer Energien (EEG) sollten daher die politischen und regulatorischen Rahmenbedingungen für den Markthochlauf dieser Technologien für die flächenneutrale PV geschaffen werden, um Planungssicherheit für Entwickler, Industrie und Anwender zu schaffen.

Über den ForschungsVerbund Erneuerbare Energien

Das Helmholtz-Zentrum Berlin ist Mitglied im ForschungsVerbund Erneuerbare Energien (FVEE), einer bundesweiten Kooperation von Forschungseinrichtungen. Die Mitglieder erforschen und entwickeln Technologien für erneuerbare Energien, Energieeffizienz, Energiespeicherung und das optimierte technische und sozio-ökonomische Zusammenwirken aller Systemkomponenten. Gemeinsames Ziel ist die Transformation der Energieversorgung zu einem nachhaltigen Energiesystem.

Text: FVEE

Literaturnachweise:

(1)   BMWi 2018 C. Lutz, M. Flaute, U. Lehr, A. Kemmler, A. Kirchner, A. auf der Maur, I. Ziegenhagen, M. Wünsch, S. Koziel, A. Piégsa, and S. Straßburg, “Gesamtwirtschaftliche Effekte der Energiewende,” GWS, Fraunhofer ISI, DIW, DLR, Prognos, 2018.

BMUB 2012 J. Nitsch, T. Pregger, T. Naegler, D. Heide, F. Trieb, Y. Scholz, K. Niehaus, N. Gerhardt, M. Sterner, T. Trost, A. von Oehsen, R. Schwinn, C. Pape, H. Hahn, M. Wickert, and B. Wenzel, “Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global,” Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), 2012.

IWES/ifeu 2015: N. Gerhardt, F. Sandau, A. Scholz, H. Hahn, P. Schuhmacher, C. Sager, F. Bergk, C. Kämper, W. Knörr, J. Kräck, U. Lambrecht, O. Antoni, J. Hilpert, and T. M. Katharina Merkel, “Interaktion EE-Strom, Wärme und Verkehr - Analyse der Interaktion zwischen den Sektoren Strom, Wärme/Kälte und Verkehr in Deutschland unter Berücksichtigung der europäischen Entwicklung. Ableitung von optimalen strukturellen Entwicklungspfaden für den Verkehrs- und Wärmesektor,” Fraunhofer-Institut für Windenergie und Energiesystemtechnik (FhG IWES), Institut für Energie- und Umweltforschung e.V. (IFEU), Stiftung Umweltenergierecht, Fraunhofer Institut für Bauphysik (FhG IBP), 2015.

ISE 2015 H.-M. Henning and A. Palzer, “Was kostet die Energiewende? Wege zur Transformation des deutschen Energiesystems bis 2050,” Fraunhofer-Institut für Solar Energiesysteme (ISE) Freiburg, 2015.

(2)   https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/zukunftswerkstatt-erneuerbare-energien.pdf?__blob=publicationFile&v=8

https://www.zsw-bw.de/uploads/media/bericht-eeg-4-solar.pdf_01.pdf

Text: FVEE


Das könnte Sie auch interessieren

  • Sauberer Brennstoff zum Kochen für das südliche Afrika hat große Wirkung
    Nachricht
    19.04.2024
    Sauberer Brennstoff zum Kochen für das südliche Afrika hat große Wirkung
    Das Verbrennen von Biomasse beim Kochen belastet Gesundheit und Umwelt. Die deutsch-südafrikanische Initiative GreenQUEST entwickelt einen sauberen Haushaltsbrennstoff. Er soll klimaschädliche CO2-Emissionen reduzieren und den Zugang zu Energie für Haushalte in afrikanischen Ländern südlich der Sahara verbessern.

  • Quantsol Summer School 2024 - jetzt bewerben!
    Nachricht
    17.04.2024
    Quantsol Summer School 2024 - jetzt bewerben!
    Vom 1. bis 8. September informiert die Quantsol Summer School 2024 über Grundlagen der solaren Energieumwandlung.

    Die International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) findet im September 2024 in Hirschegg, Kleinwalsertal, Österreich statt. Bewerbungen können bis zum 31. Mai 2024, 23:59 Uhr MEZ eingereicht werden. Organisiert wird die Schule vom Helmholtz-Zentrum Berlin und der Technischen Universität Ilmenau.

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.