Gemeinsame Forschergruppe für Quantenrechnen und -simulation

© Freie Universität Berlin

Mit einer neuen Forschergruppe stärken die Freie Universität Berlin und das Helmholtz-Zentrum Berlin (HZB) die Zusammenarbeit auf dem Gebiet des Quantenrechnens und der Simulation. Quantenmaterialien haben sehr interessante Eigenschaften, die Forschende nutzen wollen, um Daten deutlich schneller und effizienter zu verarbeiten. An Synchrotronstrahlungsquellen wie BESSY II können sie diese Materialien hervorragend untersuchen. Besonders vielversprechend ist es dabei, im Voraus die Materialeigenschaften mit Quantensimulationen zu berechnen, denn dadurch lassen sich Experimente zielgerichteter durchführen.

„Simulieren, wie hochkomplexe Materialeigenschaften entstehen“

Jens Eisert ist Professor für Physik an der Freien Universität Berlin und leitet die gemeinsame Forschergruppe. Er ist ein international renommierter Experte für Quanten-Vielteilchentheorie, Quanten-Informationstheorie und Quantenoptik.

Wie ist die Zusammenarbeit mit dem HZB zustande gekommen?

Jens Eisert: Unsere Zusammenarbeit entstand aus vielversprechenden und inspirierenden Diskussionen mit Bella Lake, die als Physikerin am Helmholtz-Zentrum Berlin arbeitet. Dabei beschäftigten wir uns mit Fragen über stark korrelierte Systeme im Labor, die mit gängigen Methoden schwer zu lösen waren. Mit der Methode der Tensornetzwerke konnten wir zu diesem Zeitpunkt für ihre Systeme erste Einsichten, aber noch kein umfassendes Bild liefern. Erst nach harter Arbeit konnten wir Methoden entwerfen, die mächtig genug sind, stark korrelierte Systeme abzubilden und zu modellieren. Durch diese Zusammenarbeit haben wir das große Potenzial erkannt, das in einer stärkeren Kooperation liegt.

Welche thematischen Anknüpfungspunkte zwischen Ihrer Forschung und den Themen des HZB sehen Sie noch?

Es gibt eine Vielzahl von Anknüpfungspunkten. Die initialen Diskussionen mit Bella Lake mündeten in ein Forschungsprogramm, aus dem sich viele Möglichkeiten – ja ein geradezu umfassendes Programm der Zusammenarbeit – ergibt. Unter anderem haben Johannes Reuther, Oliver Rader, Boris Naydenov, Annika Bande und weitere Forscher aus dem HZB ihr Interesse an einer Zusammenarbeit bekundet. Schließlich macht es auch aus strategischer Sicht Sinn, eine gebündelte Initiative zu den Quantentechnologien in Berlin aufzubauen.

Gibt es bereits konkrete Projektideen, die Sie im Rahmen der Forschergruppe verwirklichen wollen?

Selbstredend. Es gibt eine Vielzahl von Themen, an denen wir bereits arbeiten bzw. die wir in Kürze angehen wollen. Ganz konkret beschäftigen wir uns damit, wie in Quantenmaterialien aus einfachen Wechselwirkungen hochgradig komplexe Eigenschaften entstehen – und wie diese zu modellieren sind. Weiterhin wollen wir Fragen über realistisches Quantenrechnen und Quantensimulatoren gemeinsam vorantreiben. Wir werden zunächst zwei neue Wissenschaftler einstellen, die sich mit diesen Fragestellungen beschäftigen. Sie werden vor allem an der Freien Universität Berlin arbeiten, aber sehr engen Kontakt mit dem HZB halten. Ich freue mich über diese Kooperation, denn für die theoretische Physik ist die direkte Zusammenarbeit mit Gruppen aus dem HZB, die auch experimentell arbeiten, sehr fruchtbar.

sz

Das könnte Sie auch interessieren

  • Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Science Highlight
    30.11.2022
    Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.
  • Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Science Highlight
    30.11.2022
    Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Nanodiamant-Materialien besitzen Potenzial als preisgünstige Photokatalysatoren. Doch bisher benötigten solche Kohlenstoff-Nanopartikel energiereiches UV-Licht, um aktiv zu werden. Das DIACAT-Konsortium hat daher Variationen von Nanodiamant-Materialien hergestellt und analysiert. Die Arbeit zeigt: Wenn die Oberfläche der Nanopartikel mit ausreichend Wasserstoff-Atomen besetzt ist, reicht auch die schwächere Energie von Licht im sichtbaren Bereich für die Anregung aus. Photokatalysatoren auf Basis von Nanodiamanten könnten in Zukunft mit Sonnenlicht CO2 oder N2 in Kohlenwasserstoffe oder Ammoniak umwandeln.
  • Europäische Pilotlinie für innovative Tandem-Solarzellen
    Nachricht
    23.11.2022
    Europäische Pilotlinie für innovative Tandem-Solarzellen
    PEPPERONI ist ein vierjähriges Forschungs- und Innovationsprojekt, das im Rahmen von Horizon Europe kofinanziert und gemeinsam vom Helmholtz-Zentrum Berlin und Qcells koordiniert wird. Das Projekt wird dazu beitragen, die Markteinführung und Massenproduktion von Perowskit/Silizium-Tandem-Photovoltaik-Technologien voranzubringen.