Ernst-Eckhard-Koch-Award and Innovation Award for Research in Synchrotron Radiation

Dr. Simon Krause (University of Groningen, 1st from left) and Dr. Felix Willems (TU Berlin and Max Born Institute, 3rd from left) received the Ernst Eckhard Koch Prize for their outstanding dissertations. © M. Setzpfand/HZB

Dr. Simon Krause (University of Groningen, 1st from left) and Dr. Felix Willems (TU Berlin and Max Born Institute, 3rd from left) received the Ernst Eckhard Koch Prize for their outstanding dissertations. © M. Setzpfand/HZB © M. Setzpfand/HZB

The prize for innovations in synchrotron research went to PSI researchers Dr. Aldo Mozzanica (2nd from left), Dr. Bernd Schmitt (3rd from left) and Prof. Dr. Heinz Graafsma (4th from left, DESY). It was presented by Prof. Dr. Mathias Richter (5.f.l.) from the circle of friends of the HZB. The laudatio was held by Prof. Dr. Edgar Weckert, DESY (1st from left) © M. Setzpfand/HZB

The prize for innovations in synchrotron research went to PSI researchers Dr. Aldo Mozzanica (2nd from left), Dr. Bernd Schmitt (3rd from left) and Prof. Dr. Heinz Graafsma (4th from left, DESY). It was presented by Prof. Dr. Mathias Richter (5.f.l.) from the circle of friends of the HZB. The laudatio was held by Prof. Dr. Edgar Weckert, DESY (1st from left) © M. Setzpfand/HZB © M. Setzpfand/HZB

This year, the circle of friends of the HZB awarded the Ernst Eckhard Koch Prize to two young scientists for their outstanding PhD theses. The European Synchrotron Radiation Innovation Award went to a team of physicists from DESY and the Paul Scherrer Institute. The award ceremony took place at this year's User Meeting of the HZB, which was very well attended with over 500 participants and more than 50 exhibitors.

This year, the jury decided to award the Ernst Eckhard Koch Prize to two young scientists for their outstanding work (out of the eight excellent proposals): Dr. Simon Krause, University of Groningen, Netherlands, and Dr. Felix Willems, Technical University of Berlin and Max Born Institute. The chairman of the HZB-Freundeskreis, Prof. Dr. Mathias Richter, PTB, quoted the jury as saying that both the scope and the quality of the work would far exceed the usual requirements of a dissertation.

Simon Krause had investigated the gas adsorption behaviour in porous solids, so-called "Metal Organic Frameworks" (MOF) with methods of synchrotron radiation and neutrons and had presented his work at the user meeting in a lecture ("X-rays and neutrons shed light on negative gas adsorption mechanism in flexible metal-organic frameworks").

Felix Willems had analysed ultrafast switching processes using spectroscopic methods at synchrotron sources like BESSY II. He explained his results with a short lecture on "Unraveling microscopic processes in ultrafast magnetisation dynamics using XUV magnetic circular dichroism spectroscopy".

Innovation Award Synchrotron Radiation 2019

The Innovation Award Synchrotron Radiation 2019 went to Prof. Dr. Heinz Graafsma, DESY, Dr. Aldo Mozzanica and Dr. Bernd Schmitt, both from the Paul Scherrer Institute, Switzerland. The physicists had jointly developed a new ultrafast X-ray detector for free electron lasers. The AGIPD system (Adaptive Gain integrating Pixel Detector) is already in use at the European XFEL. The Innovation Award Synchrotron Radiation is endowed with 3000 Euro and is sponsored by SPECS GmbH and BESTEC GmbH.

Heinz Graafsma explains the development very clearly:

For storage rings up to now so called “photon-counting” pixel detectors are used, where the photons arrive one at a time and the signal of each photon is processed. For FELs this is not an option, since in a single 100 fsec pulse many photons will arrive at the detector, and thus cannot be processed individually. This means for FELs one has to use so called “integrating” detectors.

So far one had to choose. Either making the integrating detector very sensitive, in other words having high-gain, in order to be able to detect signals generated by a single photon, or making the integrating detector not very sensitive, in other words having low gain, in order to be able to cope with signals generated by a large amount of photons. But one could not have both.

To overcome this problem, we developed and implemented a concept of a two dimensional detector in which every single pixel individually, and completely automatically adapts it gain according to the incoming signal strength. Hence the name “adaptive gain integrating pixel detectors”.

The result is that in a single shot experiment at the FELs one is now able to record the image over its full dynamic range. This in turn results in greatly improved data quality, and thus better scientific results.

For the European XFEL there was an additional challenge, which is the extremely high repetition rate of 4.5 MHz, more than 3 orders of magnitude more than anything before. For this a 352 deep analog memory was implemented in each pixel, making AGIPD the fastest high-dynamic range X-ray camera in the world.

arö

You might also be interested in

  • BESSY II: Influence of protons on water molecules
    Science Highlight
    10.11.2022
    BESSY II: Influence of protons on water molecules
    How hydrogen ions or protons interact with their aqueous environment has great practical relevance, whether in fuel cell technology or in the life sciences. Now, a large international consortium at the X-ray source BESSY II has investigated this question experimentally in detail and discovered new phenomena. For example, the presence of a proton changes the electronic structure of the three innermost water molecules, but also has an effect via a long-range field on a hydrate shell of five other water molecules.
  • LEAPS research infrastructures to tackle societal crises
    News
    31.10.2022
    LEAPS research infrastructures to tackle societal crises
    Against a backdrop of the energy crisis, scientists and policymakers convened at Paul Scherrer Institute PSI in Switzerland and set out a vision for European accelerator based photon sources to address current and future societal challenges together.
  • Federal science minister in Berlin-Adlershof
    News
    25.10.2022
    Federal science minister in Berlin-Adlershof
    The Federal Minister for Education and Research, Bettina Stark-Watzinger, was in Berlin-Adlershof today to visit the Catalysis Laboratory (CatLab). CatLab is a research platform of Helmholtz-Zentrum Berlin and the Max Planck Society, dedicated to catalysis research that will deliver important innovations for achieving a green hydrogen economy. Upon her visit to the CatLab, the minister gained an insight into the latest technological advancements on producing and characterising thin-film catalysts and special methods for operando analytics and digital catalysis.