Not everything is ferromagnetic in high magnetic fields

Bei 25,8 Tesla findet in dem Urankristall ein Phasenübergang statt und ein komplexes magnetisches Muster etabliert sich.

Bei 25,8 Tesla findet in dem Urankristall ein Phasenübergang statt und ein komplexes magnetisches Muster etabliert sich. © HZB

High magnetic fields have a potential to modify the microscopic arrangement of magnetic moments because they overcome interactions existing in zero field. Usually, high fields exceeding a certain critical value force the moments to align in the same direction as the field leading to ferromagnetic arrangement. However, a recent study showed that this is not always the case. The experiments took place at the high-field magnet at HZB's neutron source BER II, which generates a constant magnetic field of up to 26 Tesla. This is about 500,000 times stronger than the Earth's magnetic field. Further experiments with pulsed magnetic fields up to 45 Tesla were performed at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). 

The physicists examined crystals of U2Pd2In, which form a special class of solids (Shastry-Sutherland system). The interactions between the magnetically active uranium atoms are quite complex in this structure, mainly due to the extended 5f orbitals of the outermost electrons of uranium in a solid. These 5f electrons are also carriers of the magnetic moment in the material.

Using neutron diffraction in strong fields they found that an unusually complicated non-collinear modulated magnetic structure above a critical magnetic field. The magnetic unit cell is twenty times larger than the crystallographic unit, containing 80 magnetic moments. Such a structure is a consequence of competition between different strong interactions and the applied field. “Our results are important from two reasons”, Dr. Karel Prokes (HZB) says. “First, they show that the field induced phase is not ferromagnetic and the magnetization increase at high fields is probably due to a gradual rotation of U moments towards the field direction, a finding that might be of relevance for many other systems and second, they may help to develop more precise theories dealing with 5f electron systems”.

 

Phys. Rev. Research (2020): Noncollinear magnetic structure in U2Pd2In at high magnetic fields.

K. Prokeš, M. Bartkowiak, D. I. Gorbunov, O. Prokhnenko, O. Rivin, and P. Smeibidl

DOI: 10.1103/PhysRevResearch.2.013137

arö


You might also be interested in

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups. 

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.