Not everything is ferromagnetic in high magnetic fields

Bei 25,8 Tesla findet in dem Urankristall ein Phasenübergang statt und ein komplexes magnetisches Muster etabliert sich.

Bei 25,8 Tesla findet in dem Urankristall ein Phasenübergang statt und ein komplexes magnetisches Muster etabliert sich. © HZB

High magnetic fields have a potential to modify the microscopic arrangement of magnetic moments because they overcome interactions existing in zero field. Usually, high fields exceeding a certain critical value force the moments to align in the same direction as the field leading to ferromagnetic arrangement. However, a recent study showed that this is not always the case. The experiments took place at the high-field magnet at HZB's neutron source BER II, which generates a constant magnetic field of up to 26 Tesla. This is about 500,000 times stronger than the Earth's magnetic field. Further experiments with pulsed magnetic fields up to 45 Tesla were performed at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). 

The physicists examined crystals of U2Pd2In, which form a special class of solids (Shastry-Sutherland system). The interactions between the magnetically active uranium atoms are quite complex in this structure, mainly due to the extended 5f orbitals of the outermost electrons of uranium in a solid. These 5f electrons are also carriers of the magnetic moment in the material.

Using neutron diffraction in strong fields they found that an unusually complicated non-collinear modulated magnetic structure above a critical magnetic field. The magnetic unit cell is twenty times larger than the crystallographic unit, containing 80 magnetic moments. Such a structure is a consequence of competition between different strong interactions and the applied field. “Our results are important from two reasons”, Dr. Karel Prokes (HZB) says. “First, they show that the field induced phase is not ferromagnetic and the magnetization increase at high fields is probably due to a gradual rotation of U moments towards the field direction, a finding that might be of relevance for many other systems and second, they may help to develop more precise theories dealing with 5f electron systems”.

 

Phys. Rev. Research (2020): Noncollinear magnetic structure in U2Pd2In at high magnetic fields.

K. Prokeš, M. Bartkowiak, D. I. Gorbunov, O. Prokhnenko, O. Rivin, and P. Smeibidl

DOI: 10.1103/PhysRevResearch.2.013137

arö


You might also be interested in

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.