Neue Wechselwirkung zwischen Licht und Materie an BESSY II entdeckt

Ein gebündelter weicher Röntgenstrahl mit einem Durchmesser von weniger als 50 Nanometern schreibt zahlreiche Magnetwirbel, die zusammen en Begriff „MPI-IS“ ergeben.

Ein gebündelter weicher Röntgenstrahl mit einem Durchmesser von weniger als 50 Nanometern schreibt zahlreiche Magnetwirbel, die zusammen en Begriff „MPI-IS“ ergeben. © Alejandro Posada, Felix Groß/MPI-IS

Ein deutsch-chinesisches Team um Gisela Schütz vom MPI für Intelligente Systeme hat an BESSY II eine neue Wechselwirkung zwischen Licht und Materie entdeckt. Es gelang ihnen damit, nanometerfeine magnetische Wirbel in einer magnetischen Schicht zu erzeugen. Dabei handelt es sich um so genannte Skyrmionen, die für künftige Informationstechnologien interessant sind.

Skyrmionen sind 100 Nanometer kleine dreidimensionale Strukturen, die in magnetischen Materialien vorkommen. Sie ähneln kleinen Spulen: atomare Elementarmagnete – sogenannte Spins –, die sich in geschlossenen Wirbelstrukturen anordnen. Skyrmionen sind topologisch geschützt, d. h. in ihrer Form unveränderbar und gelten daher als energieeffiziente Datenspeicher.

Weiches Röntgenlicht an BESSY II

In einer Reihe von Experimenten an der MAXYMUS-Beamline von BESSY II zeigten die Forschenden nun, dass ein gebündelter weicher Röntgenstrahl mit einem Durchmesser von weniger als 50 Nanometern einen Magnetwirbel von 100 Nanometern hervorbringen kann. Um die Skyrmionen sichtbar zu machen, nutzen die Forschenden das Rastertransmissions-Röntgenmikroskop MAXYMUS. Dabei handelt es sich um ein hochauflösendes Röntgenmikroskop, 1,8 Tonnen schwer, das an BESSY II angesiedelt ist.

Entdeckung durch glücklichen Zufall

Diese Entdeckung verdankt sich einem Zufall, denn bisher war diese Art der Interaktion zwischen Licht und Materie völlig unbekannt. „Wir wissen nicht, wie Licht Materie schreibt“, sagt Dr. Joachim Gräfe, Leiter der Forschungsgruppe Nanomagnonik und Magnetisierungsdynamik am MPI-IS. Er ist einer der Hauptautoren der Studie, die im Februar in Nature communications veröffentlicht wurde. „Wir können bestimmte Eigenschaften phänomenologisch beschreiben. Wir wissen, dass es mit dem Röntgenstrahl zu tun hat. Es ist nicht nur ein Energieeintrag wie Wärme, der das Skyrmion schreibt. Es ist wirklich ein resonanter Effekt: wir können die Atome, die für den Magnetismus verantwortlich sind, direkt anregen.“ So konnten er und sein Team „MPI-IS“ schreiben (siehe Abbildung).

Ausblick: Spintronische Datenträger

Die Ergebnisse sind insbesondere für die Entwicklung und Herstellung sogenannter spintronischer Datenträger relevant, die Informationen in Skyrmionen speichern. Sie gelten als energieeffizient und wenig störanfällig. Doch nur, wenn Skyrmione präzise und passgenau kreiert werden können – und das ist nun erstmals möglich geworden – kann diese Entwicklung ihren Lauf nehmen. „Unser Ziel ist es, dass Röntgenstrahlen in Zukunft als Werkzeug dienen, um die Anordnung magnetischer Strukturen zu bestimmen bzw. zu schreiben.“

red/MPI-IS

Das könnte Sie auch interessieren

  • Shutdown bei BESSY II: Neue Versorgungstechnik sichert langfristig den Betrieb
    Nachricht
    20.05.2022
    Shutdown bei BESSY II: Neue Versorgungstechnik sichert langfristig den Betrieb
    Die Röntgenquelle BESSY II befindet sich in einem dreimonatigen Shutdown. In dieser Zeit wird die Niederspannungshauptverteilung im Versorgungsgebäude außerhalb des Elektronenspeicherrings erneuert. Dies sichert den langfristigen stabilen Betrieb von BESSY II über das nächste Jahrzehnt hinaus.

  • Wärmedämmung für Quantentechnologien
    Science Highlight
    19.05.2022
    Wärmedämmung für Quantentechnologien
    Neue energieeffiziente IT-Bauelemente arbeiten häufig nur bei extrem tiefen Temperaturen stabil. Daher kommt es entscheidend auf eine sehr gute Wärmeisolierung solcher Elemente an, was die Entwicklung von Materialien mit extrem niedriger Wärmeleitfähigkeit erfordert. Ein Team am HZB hat nun mit einem neuartigen Sinterverfahren nanoporöse Silizium-Aluminium-Proben hergestellt, in welchen Poren und Nanokristallite den Transport von Wärme behindern und so die Wärmeleitfähigkeit drastisch reduzieren. Die Forschenden haben ein Modell für die Vorhersage der Wärmeleitfähigkeit entwickelt, das anhand von Messdaten zur Mikrostruktur der Proben und deren Wärmeleitfähigkeit bestätigt wurde. Damit liegt erstmals eine Methode für die gezielte Entwicklung von komplexen porösen Materialien mit ultraniedriger Wärmeleitfähigkeit vor.
  • Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Science Highlight
    17.05.2022
    Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Magnetische Nanostrukturen sind vielversprechende Werkzeuge für medizinische Anwendungen. Eingebaut in biologische Vehikel, lassen sich diese dann durch externe Magnetfelder an ihren Einsatzort im Körper steuern, wo sie Medikamente freisetzen oder Krebszellen zerstören können. Dazu ist jedoch die genaue Kenntnis der magnetischen Eigenschaften solcher Nanoteilchen nötig. Bisher konnten solche Informationen nur gemittelt über tausende Nanopartikel gewonnen werden. Nun hat ein Team am HZB eine Methode entwickelt, um die charakteristischen Parameter jedes einzelnen magnetischen Nanopartikels zu bestimmen.