Mathematisches Werkzeug hilft, Quantenmaterialien rascher zu berechnen

Intelligente mathematische Werkzeuge f&uuml;r die Simulation von Spin-Systemen reduzieren die ben&ouml;tigte Rechenzeit auf Supercomputern. Einige der schnellsten Supercomputer der Welt (hier JUWELS) stehen aktuell im Forschungszentrum J&uuml;lich.</p> <p>

Intelligente mathematische Werkzeuge für die Simulation von Spin-Systemen reduzieren die benötigte Rechenzeit auf Supercomputern. Einige der schnellsten Supercomputer der Welt (hier JUWELS) stehen aktuell im Forschungszentrum Jülich.

© Forschungszentrum Jülich/Sascha Kreklau

Viele Quantenmaterialien lassen sich bislang kaum rechnerisch simulieren, weil die benötigte Rechenzeit zu groß wäre. Nun hat eine gemeinsame Forschergruppe an der Freien Universität Berlin und am Helmholtz-Zentrum Berlin (HZB) einen Weg aufgezeigt, wie sich die Rechenzeiten deutlich verkürzen lassen. Dies könnte die Entwicklung von Materialien für künftige energieeffiziente IT-Technologie beschleunigen.

Weltweit arbeiten Supercomputer rund um die Uhr für die Forschung. Auch neuartige Materialien lassen sich im Prinzip im Computer simulieren, um ihre magnetischen oder thermischen Eigenschaften und Phasenübergänge zu berechnen. Der Goldstandard für solche Modellierungen ist die sogenannte Quanten-Monte-Carlo-Methode.

Welle-Teilchen-Dualismus erschwert die Modellierung

Doch die hat ein intrinsisches Problem: Aufgrund des quantenphysikalischen Welle-Teilchen-Dualismus besitzt jedes Teilchen im Festkörperverbund nicht nur Teilcheneigenschaften wie Masse und Impuls, sondern auch Welleneigenschaften wie eine Phase. Durch Interferenz überlagern sich die „Wellen“, sie können sich so lokal entweder verstärken (addieren) oder auslöschen (subtrahieren). Die Berechnungen werden dadurch ausgesprochen komplex. Dies wird als Vorzeichen-Problem der Quanten-Monte-Carlo-Methode bezeichnet.

Perspektivwechsel lohnt

„Jeden Tag kostet die Berechnung von Quantenmaterialien rund eine Millionen Stunden CPU an Großrechnern“, sagt Prof. Dr. Jens Eisert, der die gemeinsame Forschergruppe an der Freien Universität Berlin und HZB leitet. „Dies ist ein sehr erheblicher Anteil der überhaupt zur Verfügung stehenden Rechenzeit.“ Zusammen mit seinem Team hat der theoretische Physiker nun ein mathematisches Verfahren entwickelt, mithilfe dessen das Vorzeichenproblem soweit möglich verringert werden kann. „Wir zeigen, dass sich Festkörpersysteme aus sehr unterschiedlichen Perspektiven betrachten lassen. Und je nach Perspektive spielt das Vorzeichenproblem eine unterschiedlich große Rolle. Es geht dann darum, das Festkörpersystem so anzupacken, dass das Vorzeichenproblem minimal wird“, erklärt Dominik Hangleiter, Erstautor der Studie, die nun in Science Advances erschienen ist.

Anwendung auf Spin-Systeme

Für einfache Festkörpersysteme mit Spins, die sogenannte Heisenberg-Leitern bilden, konnten sie mit diesem Ansatz das Vorzeichenproblem deutlich reduzieren. Das mathematische Werkzeug lässt sich aber auch auf komplexere Spin-Systeme anwenden und verspricht eine raschere Berechnung ihrer Eigenschaften.

„Damit stellen wir eine neue Methode bereit, um gezielt Materialien mit besonderen Spin-Eigenschaften zu entwickeln“, sagt Eisert. Solche Materialien könnten in zukünftigen IT-Technologien Verwendung finden, in denen Daten mit deutlich weniger Energieaufwand verarbeitet und gespeichert werden sollen.

Science Advances 2020: Easing the Monte Carlo sign problem; Dominik Hangleiter, Ingo Roth, Daniel Nagaj, Jens Eisert

Doi: 10.1126/sciadv.abb8341

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Leitender Sasol-Forscher kommt als Industrial Research Fellow ans HZB
    Nachricht
    11.02.2025
    Leitender Sasol-Forscher kommt als Industrial Research Fellow ans HZB
    Das HZB arbeitet mit dem südafrikanischen Unternehmen Sasol im Projekt CARE-O-SENE an nachhaltigem Kerosin für die Luftfahrt (SAF) und entwickelt dafür innovative Katalysatoren. Nun verstärkt sich die Zusammenarbeit: Mit Dr. Denzil Moodley kommt ein leitender Wissenschaftler aus dem Bereich Fischer-Tropsch bei Sasol Research and Technology an das HZB. Moodley wird am HZB seine Expertise einbringen, mit dem Ziel, den Innovationszyklus für nachhaltige Kraftstofftechnologien zu beschleunigen.
  • HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Nachricht
    04.02.2025
    HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Durch die Kombination von zwei Halbleiterdünnschichten zu einer Tandemsolarzelle sind hohe Wirkungsgrade bei minimalem ökologischem Fußabdruck erreichbar. Teams aus dem HZB und der Humboldt-Universität zu Berlin haben nun eine Tandemzelle aus CIGS und Perowskit vorgestellt, die mit einem Wirkungsgrad von 24,6 % den neuen Weltrekord hält. Dieser Wert wurde durch das Fraunhofer-Institut für Solare Energiesysteme ISE zertifiziert.
  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    31.01.2025
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    In der Titelgeschichte stellen wir Astrid Brandt vor. Sie leitet die Nutzerkoordination am Helmholtz-Zentrum Berlin. Mit ihrem Team behält sie stets den Überblick über Anträge, Messzeiten und Publikationen der bis zu 1.000 Gastforschenden, die jedes Jahr zu BESSY II kommen. Naturwissenschaften faszinierten sie schon immer.

    Doch auch ihre zweite Leidenschaft, die Musik, hat sie bis heute nicht losgelassen.