Forscherteam liefert konkreten Ansatzpunkt, um die Leistung von CIGS-Solarzellen zu verbessern

</p> <p>Daniel Abou-Ras und sein Team ermitteln die mikroskopische Struktur einer sehr guten CIGS-D&uuml;nnschicht-Solarzelle (oben). Sie dient als Vorbild f&uuml;r eine Computersimulation (unten)

Daniel Abou-Ras und sein Team ermitteln die mikroskopische Struktur einer sehr guten CIGS-Dünnschicht-Solarzelle (oben). Sie dient als Vorbild für eine Computersimulation (unten) © HZB/M. Krause

Ein Forscherteam hat mithilfe von Elektronenmikroskopen und Computersimulationen ermittelt, warum es zu Verlusten in Dünnschichtsolarzellen kommt. Die Forschenden von der Martin-Luther-Universität Halle-Wittenberg, vom Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) und vom Helmholtz-Zentrum Berlin (HZB) geben konkrete Hinweise, wie sich der bereits hohe Wirkungsgrad von CIGS-Solarzellen verbessern lässt. Die Ergebnisse wurde in der Zeitschrift Nature Communication veröffentlicht.

Dünnschichtsolarzellen aus Kupfer-Indium-Gallium-Diselenid oder kurz CIGS glänzen schon längst mit Rekord-Wirkungsgraden von 23,4 Prozent und weiteren Vorteilen wie der Möglichkeit zur Produktion auf flexiblen Substraten, was mit herkömmlichen Solarzellen aus Silizium-Wafern nicht möglich ist. Dieser Wirkungsgrad lässt sich aber durchaus noch verbessern, weil beim Umwandeln von Sonnenlicht in elektrische Leistung einige Verluste auftreten. Nur müssten die Hersteller erst einmal wissen, wo diese Einbußen genau auftreten.

Korngrenzen sind entscheidend

Eine Antwort auf diese Frage hat jetzt das Team um HZB-Forscher Dr. Daniel Abou-Ras geliefert und erhärtet damit einen schon länger bestehenden Verdacht: Ein erheblicher Teil der Verluste passiert an den Grenzen zwischen den CIGS-Kristallen einer Dünnschicht-Solarzelle, wenn sich an diesen „Korngrenzen“ positive und negative elektrische Ladungen gegenseitig neutralisieren.

Diese Ladungen entstehen, wenn das Sonnenlicht auf ein Halbleitermaterial wie Silizium oder CIGS trifft. Die energiereiche Strahlung schlägt aus den Atomen dieses Halbleiters elektrisch negativ geladene Elektronen heraus, zurück bleiben positiv geladene Elektronenfehlstellen, die in der Fachsprache als „Löcher“ bezeichnet werden. Diese beweglichen, elektrischen Ladungen werden an Kontakten gesammelt und liefern dort die elektrische Leistung. Die wiederum hängt von zwei Faktoren ab: Je mehr Elektronen die Sonnenstrahlung im Halbleiter anregt, umso besser ist auf der einen Seite der Stromfluss. Andererseits hängt die elektrische Leistung auch von der elektrischen Spannung ab, die sich verringert, wenn positive und negative Ladungen wieder zusammenkommen. Diese Rekombination von Löchern und Elektronen mindert also die elektrische Leistung einer Solarzelle.

Mit dem Elektronenmikroskop und Simulationen Verlusten auf der Spur

„Zunächst haben wir mit dem Elektronenmikroskop die Struktur solcher CIGS-Dünnschicht-Solarzellen untersucht und an exakt der gleichen Stelle die Verteilung der vorhandenen Elemente analysiert“, erklärt Daniel Abou-Ras. Diese Verteilung gibt dem Forscher wichtige Hinweise zur Lage der einzelnen CIGS-Kristalle. Mit einer speziellen Kombination weiterer Methoden klärt das Team diese Mikrostrukturen sehr fein auf.

Die so ermittelte Struktur einer CIGS-Solarzelle mit sehr gutem Wirkungsgrad überträgt die Gruppe dann in ein Computermodell. Diese Simulation passen Daniel Abou-Ras und sein Team mit Hilfe ihrer experimentellen Ergebnisse so lange an, bis sie die Vorgänge in einer echten CIGS-Solarzelle möglichst exakt nachbildet.

„In diesem Computermodell können wir dann beobachten, wie verschiedene Veränderungen die elektrische Leistung einer Solarzelle beeinflussen“, erklärt Daniel Abou-Ras. So hat die absorbierende Schicht einer CIGS-Solarzelle durch eine sogenannte p-leitende Dotierung von vorneherein einen Überschuss an Löchern, die sich dort unregelmäßig verteilen. Variiert die Gruppe im Computermodell die Verteilung dieser Löcher, haben solche Inhomogenitäten keinen messbaren Einfluss auf die elektrische Leistung der Solarzelle. Die Verluste haben also eine andere Ursache. Auch unterschiedliche Lebensdauern der Paare aus Elektronen und Löchern verändern die Leistung der CIGS-Solarzellen nur unwesentlich.

Entscheidend ist, was an den Grenzbereichen der Kristalle passiert

Sehr wohl aber beeinflussen die Grenzbereiche zwischen den einzelnen Kristallen die Leistung deutlich. „Die Atome in CIGS-Kristallen ordnen sich ja in bestimmten Strukturen an“, erklärt Daniel Abou-Ras. An den Stellen, an denen sich zwei solche hochgeordneten Kristalle berühren, passen diese Kristallgitter oft nicht so gut zusammen. Dort entstehen Defekte, die Elektronen oder Löcher gut einfangen können. Das Team ist mit der vorliegenden Arbeit nun in der Lage, recht gut zu bestimmen, wie stark die Ladungen rekombinieren und wie sehr entsprechend Spannung und Leistung der Solarzellen abfallen.

„Dieses Ergebnis gibt den Herstellern einen wichtigen Hinweis, wie sie CIGS-Solarzellen weiter verbessern können“, ist Daniel Abou-Ras überzeugt. Schaffen die Entwickler es, die Kristalle erheblich zu vergrößern, gibt es auch weniger Grenzflächen und der bisherige Rekord-Wirkungsgrad könnte wohl deutlich verbessert werden.

DOI: 10.1038/s41467-020-17507-8

 

Roland Knauer


Das könnte Sie auch interessieren

  • Best Innovator Award 2023 für Artem Musiienko
    Nachricht
    22.03.2024
    Best Innovator Award 2023 für Artem Musiienko
    Dr. Artem Musiienko ist für seine bahnbrechende neue Methode zur Charakterisierung von Halbleitern mit einem besonderen Preis ausgezeichnet worden. Auf der Jahreskonferenz der Marie Curie Alumni Association (MCAA) in Mailand, Italien, wurde ihm der MCAA Award für die beste Innovation verliehen. Seit 2023 forscht Musiienko mit einem Postdoc-Stipendium der Marie-Sklodowska-Curie-Actions in der Abteilung von Antonio Abate, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP) am HZB.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.

  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart.