Perowskit-Solarzellen: Auf dem Weg zum gezielten Design von Tinten für die industrielle Fertigung

Schematische Darstellung: Aus der Tinte bildet sich über Zwischenphasen eine polykristalline Perowskit-Dünnschicht.

Schematische Darstellung: Aus der Tinte bildet sich über Zwischenphasen eine polykristalline Perowskit-Dünnschicht. © HZB

Für die Herstellung von hochwertigen Perowskit-Dünnfilmen für großflächige Photovoltaikmodule werden oft optimierte „Tinten“ verwendet, die eine Mischung von Lösungsmitteln enthalten. Ein HZB-Team hat nun an BESSY II analysiert, wie die Kristallisationsprozesse in solchen Mischungen ablaufen. Mit einem neu entwickelten Modell ist es zudem nun möglich, die Kinetik der Kristallisationsprozesse für verschiedene Lösungsmittelgemische vorab zu bewerten. Dies ist hilfreich für die Produktion von Perowskit-Modulen im industriellen Maßstab.

Hybride organische Perowskit-Halbleiter ermöglichen Solarzellen mit hohen Wirkungsgraden bei niedrigen Kosten. Sie können aus Vorläuferlösungen hergestellt werden, die nach dem Auftragen auf ein Substrat einen polykristallinen Dünnfilm bilden. Einfache Herstellungsverfahren wie das Aufschleudern einer Vorläuferlösung führen oft nur im Labormaßstab, d.h. bei sehr kleinen Proben, zu guten Ergebnissen.

Perowskit-Schichten aus dem Tintendrucker

Für die Herstellung großflächiger Photovoltaikmodule entwickelt das Team von Dr. Eva Unger daher Druck- und Beschichtungsverfahren: Sie verwenden dabei „Tinten“ aus den in Lösungsmitteln gelösten Vorläufersubstanzen.  Die Zusammensetzung der Tinte ist entscheidend für die Qualität der späteren Dünnschicht: Die Lösungsmittel beeinflussen durch ihre Eigenschaften den Prozess der Kristallisation. „Unsere Forschungsfrage lautete: Wie können wir Unterschiede in der Kristallisationskinetik bei der Verwendung verschiedener Lösungsmittel vorab wissensbasiert abschätzen?" erklärt Unger, die am HZB die Nachwuchsgruppe Hybridmaterialbildung und Skalierung leitet.

Unterschiedliche Verdampfungsraten

In Lösungsmitteln mit nur einer Komponente wird der Kristallisationsprozess durch die Verdampfungsrate bestimmt. „Bei Mischungen aus verschiedenen Lösungsmitteln wird die Verdampfung von der flüchtigsten Komponente dominiert, die am schnellsten verdampft. Dadurch ändert sich das Verhältnis der Lösungsmittel, die bei der Kristallisation vorhanden sind", sagt Dr. Oleksandra Shargaieva, Postdoc in Ungers Team.  Am KMC-2-Strahlrohr von BESSY II konnte sie die Zwischenphasen während der Bildung der Perowskit-Dünnschicht analysieren. „Dabei spielen sowohl die Verdampfungsraten der Lösungsmittel als auch die Bindungsstärken an das Bleihalogenid eine Rolle“, sagt Shargaieva.

Wissensbasierte Optimierung

„Diese Erkenntnisse sind hilfreich, um die Kinetik der Kristallisationsprozesse des Perowskit-Dünnfilms für verschiedene Lösungsmittelkombinationen zu berechnen", sagt Shargaieva. Und Unger ergänzt: Beim Aufskalieren vom Labormaßstab mangelt es noch an systematischem Wissen. Mit diesen Ergebnissen ebnen wir den Weg für das wissensbasierte Design von Tinten, um die Herstellung von Perowskit-Dünnschichten im industriellen Maßstab oder von Perowskit-Dünnschichten hoher Qualität zu ermöglichen.“

arö


Das könnte Sie auch interessieren

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.
  • Zusammenarbeit mit Korea Institute of Energy Research
    Nachricht
    23.04.2024
    Zusammenarbeit mit Korea Institute of Energy Research
    Am Freitag, den 19. April 2024, haben der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin, Bernd Rech, und der Präsident des Korea Institute of Energy Research (KIER), Yi Chang-Keun, in Daejeon (Südkorea) ein Memorandum of Understanding (MOU) unterzeichnet.