Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen

© MPI-IS

Das oben gezeigte Graustufenbild zeigt eine Momentaufnahme der zeitaufgelösten Röntgenmikroskopie des magnonischen Raum-Zeit-Kristalls. Durch dessen Interaktionen mit weiteren Magnonen entstehen ultrakurze Spinwellen, die auf der unteren Abbildung dargestellt sind. Dabei beschreibt der Farbraum die Phase und die Helligkeit die Amplitude der erzeugten Spinwellen.

Das oben gezeigte Graustufenbild zeigt eine Momentaufnahme der zeitaufgelösten Röntgenmikroskopie des magnonischen Raum-Zeit-Kristalls. Durch dessen Interaktionen mit weiteren Magnonen entstehen ultrakurze Spinwellen, die auf der unteren Abbildung dargestellt sind. Dabei beschreibt der Farbraum die Phase und die Helligkeit die Amplitude der erzeugten Spinwellen. © MPI-IS

Mithilfe des Rasterröntgenmikroskops MAXYMUS an Bessy II am Helmholtz Zentrum Berlin konnten sie die periodische Magnetisierungsstruktur in einem Kristall sogar filmen. © MPI-IS

13.38 s

Einem deutsch-polnischen Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen zu erzeugen. Mithilfe des Rasterröntgenmikroskops MAXYMUS an Bessy II am Helmholtz Zentrum Berlin konnten sie die periodische Magnetisierungsstruktur in einem Kristall sogar filmen. Dieses weltweit erste Video eines Raum-Zeit-Kristalls bei Raumtemperatur sowie das Forschungsprojekt an sich stellten die Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart, der Adam Mickiewicz University und der Polish Academy of Sciences in Poznań in Physical Review Letters vor.

Ein Kristall ist ein Festkörper, dessen Atome oder Moleküle regelmäßig in einer bestimmten Struktur angeordnet sind. Bei Raum-Zeit-Kristallen verhält es sich ähnlich: die wiederkehrende Struktur gibt es allerdings nicht nur im Raum, sondern auch in der Zeit. Die kleinsten Bestandteile sind ständig in Bewegung, bis sie nach einer bestimmten Periode wieder exakt dem ursprünglichen Anordnungsmuster entsprechen.

Der Physiknobelpreisträger Frank Wilczek entdeckte 2012 die Symmetrie von Materie in der Zeit. Er gilt als der Entdecker dieser sogenannten Zeitkristalle, obwohl er sie als Theoretiker nur hypothetisch vorhersagte. Dass es Raum-Zeit-Kristalle tatsächlich gibt, wurde erstmals 2017 entdeckt. Jedoch waren die Strukturen nur wenige Nanometer klein und bildeten sich nur bei sehr kalten Temperaturen von unter -250 Grad Celsius. Dass es den deutsch-polnischen Wissenschaftlern nun gelang, bei Raumtemperatur mit einigen Mikrometern verhältnismäßig große Raum-Zeit-Kristalle in einem Video abzubilden, gilt daher als bahnbrechend. Ihr Raum-Zeit-Kristall bestand aus Magnonen, den kleinsten Bestandteilen einer Spinwelle. Besonders spannend ist, dass sie zeigen konnten, dass ihr Raum-Zeit-Kristall mit anderen Magnonen, die auf ihn treffen, interagieren kann.

Ein Experiment, das bisher noch nirgendwo gelang

„Wir haben das regelmäßig wiederkehrende Muster der Magnonen in Raum und Zeit genommen, darauf weitere Magnonen geschickt, die dann letztendlich gestreut wurden. Somit konnten wir zeigen, dass beide miteinander interagieren können. Das konnte bisher noch niemand in einem Experiment direkt zeigen, geschweige denn in einem Video“, sagt Nick Träger, Doktorand am MPI-IS, der zusammen mit Pawel Gruszecki Erstautor der Publikation ist.

In ihrem Versuch legten Träger und Gruszecki einen Streifen eines magnetischen Materials auf eine mikroskopische Antenne, durch die sie einen Hochfrequenz-Strom leiteten. Dieses Mikrowellenfeld löste ein oszillierendes Magnetfeld aus, eine Energiequelle, die die Magnonen in dem Streifen anregte. Von links und rechts wanderten magnetische Wellen in den Streifen und kondensierten spontan in ein immer wiederkehrendes Muster in Raum und Zeit. Im Gegensatz zu trivialen, stehenden Wellen entstand dieses Muster schon vor der Interferenz der zwei aufeinander zulaufenden Wellen. Bei dem Muster, das regelmäßig verschwindet und von selbst wieder entsteht, muss es sich also um einen Quanteneffekt handeln.

Gisela Schütz, Direktorin am MPI-IS und Leiterin der Abteilung für Moderne Magnetische Systeme weist auf die Einzigartigkeit der Röntgenkamera hin: „Sie kann die Wellenfronten nicht nur mit sehr hoher Auflösung, die 20 x besser ist als das beste Lichtmikroskop, sichtbar machen. Das geht sogar mit bis zu 40 Milliarden Bildern pro Sekunde und mit extrem hoher Sensitivität auch auf magnetische Phänomene.“

„Wir konnten zeigen, dass solche Raum-Zeit-Kristalle viel robuster und weit mehr verbreitet sind, als man zunächst dachte“, sagt Pawel Gruszecki, Wissenschaftler der Physikfakultät der Adam Mickiewicz Universität in Poznań. „Unser Kristall kondensiert bei Raumtemperatur und Teilchen können mit ihm – anders als bei einem isolierten System – interagieren. Zudem hat er eine Größe erreicht, mit der man etwas mit dem Raum-Zeit-Kristall machen könnte. Daraus ergeben sich neben den spannenden fundamentalen Eiblicken auch möglicherweise viele Anwendungen.“

Joachim Gräfe, ehemaliger Forschungsgruppenleiter der Abteilung für Moderne Magnetische Systeme am MPI-IS und Letztautor des Forschungsprojekts, pflichtet seinem Kollegen bei und sagt abschließend: „Klassische Kristalle haben ein sehr breites Anwendungsfeld. Wenn nun Kristalle nicht nur im Raum, sondern auch in der Zeit interagieren können, fügen wir eine weitere Dimension möglicher Anwendungen hinzu. Das Potenzial für Anwendungen in der Kommunikationstechnik, der Radartechnik oder Bildgebung ist groß.“

MPI-IS


Das könnte Sie auch interessieren

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.