The 4000th eye tumour patient treated with protons at HZB

Overview: Number of patients treated with prontons at HZB from 1998 to 2020.  

Overview: Number of patients treated with prontons at HZB from 1998 to 2020.   © HZB/S. Kodalle

On 19 February 2021, the 4000th eye tumour patient received irradiation with protons, performed by a joint team from Helmholtz-Zentrum Berlin (HZB) and Charité - Universitätsmedizin Berlin. The number of patients treated in 2020 remained at the previous year's level despite the more difficult corona conditions. The treatment in Berlin-Wannsee is only available for uveal melanomas of the eye. The proton accelerator at HZB is the only therapy site for this disease in Germany.

For more than 20 years, Charité - Universitätsmedizin Berlin and Helmholtz-Zentrum Berlin (HZB) have jointly offered irradiation of eye tumours with protons. For this purpose, the HZB operates a proton accelerator, while the medical care of patients is provided by the Charité.

"We congratulate the joint team on this great success and thank them for doing everything they could under the difficult pandemic conditions to maintain the operation of the life-saving eye tumour therapy," says Prof. Bernd Rech, spokesman for the scientific management of HZB. 

500 to 600 people contract malignant uveal melanoma in Germany every year. In 97 percent of cases, the tumour can be completely destroyed by irradiation with protons. In most cases, not only the eye but also the vision can be preserved to a satisfactory degree. Radiation with protons is a particularly effective method: the energy of the proton beam can be adjusted in such a way that practically only the tumour receives the radiation, while the surrounding healthy tissue is spared.

sz

  • Copy link

You might also be interested in

  • Less is more: Why an economical Iridium catalyst works so well
    Science Highlight
    05.12.2024
    Less is more: Why an economical Iridium catalyst works so well
    Iridium-based catalysts are needed to produce hydrogen using water electrolysis. Now, a team at HZB has shown that the newly developed P2X catalyst, which requires only a quarter of the Iridium, is as efficient and stable over time as the best commercial catalyst. Measurements at BESSY II have now revealed how the special chemical environment in the P2X catalyst during electrolysis promotes the oxygen evolution reaction during water splitting.
  • Protons against cancer: New research beamline for innovative radiotherapies
    News
    27.11.2024
    Protons against cancer: New research beamline for innovative radiotherapies
    Together with the University of the Bundeswehr Munich, the HZB has set up a new beamline for preclinical research. It will enable experiments on biological samples on innovative radiation therapies with protons.
  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.