Dental materials science: HZB is part of a research project funded by DFG

Artificial and natural interzones on a tooth restored with non-degradable biomaterials are exposed to mechanical (left: stresses acting in compression, tension and shear) and biological challenges (right: bacterial attachment, penetration, and other interactions with biological media).

Artificial and natural interzones on a tooth restored with non-degradable biomaterials are exposed to mechanical (left: stresses acting in compression, tension and shear) and biological challenges (right: bacterial attachment, penetration, and other interactions with biological media). © P. Zaslansky/Charité.

How can dental restorations – such as fillings and crowns – be made to last longer? A new research group centered at Charité – Universitätsmedizin Berlin and Technische Universität (TU) Berlin plans to address this topic by utilizing approaches from both materials science and dentistry. The interdisciplinary ‘InterDent’ research group is funded by the German Research Foundation (DFG). It will receive an initial funding of €2.1 million Euro over three years. Partners also include the Helmholtz-Zentrum Berlin (HZB) and the Max Planck Institute of Colloids and Interfaces (MPI-KG).

The goal of the team is to create better dental materials by shedding light on the ways in which different materials interact with the surrounding tissues. One of the sub-projects aims at predicting the way in which dentine (the hard bony tissue that makes up the tooth´s core) changes over time, depending on the material used for the filling to which it is attached. Employing non-destructive, highly sensitive, high-resolution technology, the researchers will study the microstructure and chemical characteristics of dentine, tracking progressive changes over time as part of an  aging process known as ‘sclerosis’. “We want to use this approach in order to develop a model of sclerotic dentine which will enable us to gain a better understanding of changes in its structure and composition,” says Dr. Ioanna Mantouvalou of the HZB, who leads the sub-project together with Dr. Paul Zaslansky, the research group’s spokesperson, who is project leader at Charité’s Institute of Dental, Oral and Maxillary Medicine.


Charité /red.


You might also be interested in

  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fertilisation under the X-ray beam
    Science Highlight
    19.03.2024
    Fertilisation under the X-ray beam
    After the egg has been fertilized by a sperm, the surrounding egg coat tightens, mechanically preventing the entry of additional sperm and the ensuing death of the embryo. A team from the Karolinska Institutet has now gained this new insight through measurements at the X-ray light sources BESSY II, DLS and ESRF.