Perowskit-Solarzellen: Rolle der Wasserstoffbrückenbindungen beleuchtet

Der Ausschnitt zeigt ausgewählte Orbitale in MAPI-Perowskit im Grundzustand.

Der Ausschnitt zeigt ausgewählte Orbitale in MAPI-Perowskit im Grundzustand. © HZB

Auf der Basis von Röntgenmessungen an Methylammonium-Perowskit-Halbleitern hat ein HZB-Team nun gezeigt, welche Rolle Wasserstoffbrückenbindungen in diesen Materialien spielen. Außerdem fand die Forschungsgruppe, dass Strahlenschäden durch weiche Röntgenstrahlung bei dieser empfindlichen Materialklasse noch schneller auftreten als erwartet. Beide Ergebnisse liefern wichtige Hinweise für die Perowskit-Materialforschung für Solarzellen.

Metallhalogenid-Perowskit (MHP)-Solarzellen werden in Labors auf der ganzen Welt entwickelt. Diese Materialklasse ist kostengünstig, leicht zu verarbeiten und hat bereits nach wenigen Jahren der Entwicklung Wirkungsgrade von über 20 Prozent erreicht. Durch Variation der chemischen Zusammensetzung können die optoelektronischen Eigenschaften genau auf das Sonnenlicht und die jeweilige Anwendung abgestimmt werden. Die höchsten Wirkungsgrade erreichen hybride Perowskite, die Methylammonium-Kationen (MA) enthalten, aber die Anwesenheit von MA ist auch mit Instabilität verbunden.

Nun hat eine internationale Kollaboration, an der auch die HZB-Abteilung Grenzflächen-Design unter der Leitung von Marcus Bär beteiligt ist, neue Erkenntnisse über die elektronische Struktur und insbesondere die Wasserstoffbrückenbindungen in Methylammonium-Blei-Iodid-Perowskit-Filmen gewonnen. Dafür kombinierten sie Messdaten mit einer theoretischen Modellierung. Die Proben stammten aus dem Labor des Perowskit-Pioniers Henry Snaith, Universität Oxford, und die röntgenspektroskopischen Messungen (XES) wurden noch vor der Pandemie an der Advanced Light Source am Lawrence Berkeley National Laboratory durchgeführt. Die Modellierung der elektronischen Struktur und der ultraschnellen Bewegung von Wasserstoffatomen innerhalb der Struktur leistete Michael Odelius, Universität Stockholm.

Signatur der Wasserstoffbrückenbindungen entdeckt

„Durch die Kombination von elementspezifischen weichen röntgenspektroskopischen Messungen mit Molekulardynamik und Dichtefunktionaltheorie-Modellierung konnten wir neue Einblicke in die elektronische Struktur und Dynamik der organischen MHP-Komponente gewinnen", sagt Regan Wilks, HZB-Physiker und Erstautor der Studie. Insbesondere gelang es dem Team, spektrale Signaturen der Wasserstoffbrückenbindungen zwischen dem organischen Methylammonium-Molekül und dem anorganischen Gerüst des Perowskits zu detektieren. Messungen auf der Femtosekunden-Zeitskala lieferten zusätzlich Hinweise auf signifikante dynamische Änderungen der Struktur während der Messung.

Strahlenschäden treten schneller auf als erwartet

Um diese ultraschnellen Signale von den Effekten der Schädigung durch den hochintensiven Synchrotron-Röntgenstrahl zu trennen, charakterisierte die Gruppe auch diese Schädigungseffekte gründlich. Diese Schädigungen können auf der Zeitskala von 100 ms auftreten, also viel schneller als die Dauer eines Standardexperiments. Das bedeutet: zu dem Zeitpunkt, an dem die Messung beginnt, Ergebnisse zu liefern, ist der Schaden bereits eingetreten.  

„Es ist wichtig, diese Effekte in einer Publikation zu dokumentieren, auch wenn es nicht das wissenschaftlich interessanteste Ergebnis ist, weil es eine sehr wichtige Information für andere Gruppen sein kann, die vielleicht ähnliche Experimente durchführen oder unsere Ergebnisse bestätigen wollen", betont Wilks. Um Strahlenschäden und damit Artefakte während der Messung zu vermeiden, wurde die Probe unter dem weichen Röntgenstrahl während der Messung senkrecht zum Photonenstrahl bewegt, so dass die Bestrahlung eines jeden Punktes auf einen Sekundenbruchteil beschränkt blieb.

arö


Das könnte Sie auch interessieren

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.
  • Zusammenarbeit mit Korea Institute of Energy Research
    Nachricht
    23.04.2024
    Zusammenarbeit mit Korea Institute of Energy Research
    Am Freitag, den 19. April 2024, haben der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin, Bernd Rech, und der Präsident des Korea Institute of Energy Research (KIER), Yi Chang-Keun, in Daejeon (Südkorea) ein Memorandum of Understanding (MOU) unterzeichnet.