Batterieforschung - Projekt SkaLiS mit 2,2 Millionen Euro vom BMBF gefördert

Pouchzellen Labor

Pouchzellen Labor © HZB

SkaLiS Projektteam

SkaLiS Projektteam © HZB

Für die Energiewende werden leistungsstarke, kompakte und günstige Batterien benötigt. Dafür forschen am Helmholtz-Zentrum Berlin (HZB) Gruppen um Prof. Dr. Yan Lu, Dr. Ingo Manke und Dr. Sebastian Risse. Sie untersuchen und entwickeln neuartige Elektroden-Materialien, die auf Schwefel oder Silizium basieren. Nun koordiniert Risse auch noch ein großes Projekt, an dem neben Teams aus dem HZB auch die Universität Potsdam, die Technische Universität Berlin, die Technische Universität Dresden sowie das Fraunhofer Institut für Werkstoff- und Strahltechnik IWS Dresden beteiligt sind.

Das Projekt SkaLiS startet im Juli 2021 und wird in den kommenden drei Jahren mit insgesamt 2,2 Millionen Euro durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert. SkaLiS steht für „Operando-Analyse gestütztes, skalenübergreifendes und skalierbareres Elektroden-Design zur Leistungserhöhung von Lithium-Schwefel-Pouchzellen“.

In SkaLiS (FKZ: 03XP0398) wollen die beteiligten Forschungsgruppen einen Lithium-Schwefel (Li-S) Demonstrator auf Pouchzellenebene herstellen, dessen Kathode gleich auf mehreren Skalen strukturiert ist. Mit diesem Ansatz soll die Li-S Batterie deutlich stabiler und leistungsstärker als bisherige Batteriezellen sein. Für die Bewertung der industriellen Relevanz steht dem Konsortium ein Industriebeirat bestehend aus Vertretern der Firmen Airbus, Rolls-Royce, Wingcopter, Customcells und E-Lyte zur Seite.

Die HZB-Abteilung „Elektrochemische Energiespeicherung“ hat dafür bereits die passende Infrastruktur aufgebaut: Die sogenannte „Pouch-Cell-Line“ – dort lassen sich aus Ausgangsmaterialien in mehreren einfachen Schritten Versuchs-Batterien in einem flachen „Taschenformat“ herstellen (siehe Filmclip).

Im SkaLiS Projekt ist darüber hinaus eine sechsstellige Investition in ein neues Detektorsystem für ein Röntgenkleinwinkel-Instrument vorgesehen. Es wird derzeit am Standort Wannsee in Risses Elektrochemie-Gruppe aufgebaut und ist besonders geeignet, um Materialien wie Batterie-Elektroden zu untersuchen.

Das Kathodenmaterial stellt das Team um die Chemikerin Yan Lu selbst her. Es besteht aus fein vermahlenen Schwefelpartikeln, die in Kohlenstoff mit spezieller Porosität eingelagert werden. Nach der Fertigung der Batteriezelle in Berlin und Dresden werden die elektrochemische Leistungsfähigkeit sowie die Stabilität eingehend mit operando Methoden von den Arbeitsgruppen um Manke und Risse analysiert. Somit lassen sich direkte Rückschlüsse auf die Zellfertigung und die Kathodenmaterial-Synthese ziehen, die auch für die Industrie relevant sind.

arö


Das könnte Sie auch interessieren

  • Best Innovator Award 2023 für Artem Musiienko
    Nachricht
    22.03.2024
    Best Innovator Award 2023 für Artem Musiienko
    Dr. Artem Musiienko ist für seine bahnbrechende neue Methode zur Charakterisierung von Halbleitern mit einem besonderen Preis ausgezeichnet worden. Auf der Jahreskonferenz der Marie Curie Alumni Association (MCAA) in Mailand, Italien, wurde ihm der MCAA Award für die beste Innovation verliehen. Seit 2023 forscht Musiienko mit einem Postdoc-Stipendium der Marie-Sklodowska-Curie-Actions in der Abteilung von Antonio Abate, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP) am HZB.
  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.