Wenn beim Abkühlen die Vibrationen zunehmen: Anti-Frieren beobachtet

Die Entwicklung dieses Fleckmusters mit der Zeit zeigt mikroskopische Fluktuationen in der Probe.

Die Entwicklung dieses Fleckmusters mit der Zeit zeigt mikroskopische Fluktuationen in der Probe. © 10.1103/PhysRevLett.127.057001

Ein internationales Team hat in einem Nickel-Oxid-Material beim Abkühlen einen erstaunlichen Effekt beobachtet: Statt einzufrieren, nehmen bestimmte Fluktuationen mit sinkender Temperatur sogar zu. Nickel-Oxid ist ein Modellsystem, das strukturell den Hochtemperatur-Supraleitern ähnelt. Das Experiment zeigt wieder einmal, dass das Verhalten dieser Materialklasse immer Überraschungen bereithält.

In praktisch aller Materie bedeuten tiefere Temperaturen weniger Bewegung ihrer mikroskopischen Bestandteile. Je weniger Wärme als Energie zur Verfügung steht, desto seltener wechseln Atome ihren Ort oder magnetische Momente ihre Richtung: Sie frieren ein. Ein internationales Team geleitet von Wissenschaftlern des HZB und von DESY hat nun erstmals ein gegenteiliges Verhalten in einem Nickel-Oxid-Material beobachtet, das eng mit Hochtemperatur-Supraleitern verwandt ist. Fluktuationen in diesem Nickelat frieren beim Abkühlen nicht etwa ein, sondern werden schneller.

Wir nutzten für ihre Beobachtung die innovative Technik der Röntgen-Korrelationsspektroskopie: Dabei konnten wir mittels kohärenter weicher Röntgenstrahlung die Ordnung elementarer magnetischer Momente (Spins) in Raum und Zeit verfolgen. Beim Abkühlen ordnen sich Spins zu einem Streifen-Muster an. Diese Ordnung ist bei höheren Temperaturen nicht perfekt, sondern besteht aus einer zufälligen Anordnung kleiner lokal geordneter Bereiche. Wir fanden, dass diese Anordnung nicht statisch ist, sondern auf Zeitskalen von einigen Minuten fluktuiert. Beim weiteren Abkühlen werden diese Fluktuationen zunächst immer langsamer und die einzelnen geordneten Bereiche wachsen. Soweit entspricht dieses Verhalten dem, was eine Vielzahl von Materialien zeigen: Je weniger thermische Energie zur Verfügung steht, desto mehr frieren Fluktuationen ein und nimmt Ordnung zu.

Völlig ungewöhnlich und noch nie so beobachtet war jedoch, dass beim weiteren Abkühlen die Fluktuationen wieder schneller wurden, während die geordneten Bereiche schrumpften. Die Streifen-Ordnung zerfällt also bei tiefen Temperaturen sowohl räumlich als auch durch immer schneller werdende Fluktuationen und zeigt somit eine Art Anti-Frieren.

Diese Beobachtung hilft möglicherweise dabei, die Hochtemperatur-Supraleitung in Kupfer-Oxiden (Kupraten) besser zu verstehen. In Kupraten wird angenommen, dass eine Streifenordnung ähnlich der in Nickelaten in Konkurrenz zur Supraleitung steht. Auch dort zerfällt die Streifenordnung bei tiefen Temperaturen, was bisher damit erklärt wurde, dass die sich bildende Supraleitung die Streifenordnung verdrängt. Da in Nickelaten keine Supraleitung existiert, die Streifenordnung aber dennoch bei tiefen Temperaturen zerfällt, scheint bei der bisherigen Beschreibung der Kuprat-Supraleitung ein wichtiger Aspekt zu fehlen. Möglicherweise wird die Streifenordnung in Kupraten nicht einfach nur verdrängt, sondern zerfällt auch aus intrinsischen Gründen und räumt damit das Feld für das Entstehen der Supraleitung. Ein tieferes Verständnis dieses Mechanismus‘ könnte helfen, Supraleitung zu kontrollieren.

Die Studie zeigt das Potenzial, das kohärente weiche Röntgenstrahlung für die Untersuchung von Materialien hat, die räumlich uneinheitlich sind, insbesondere solche Materialien, bei denen aus dieser räumlichen Uneinheitlichkeit neue Funktionalität erwächst. Korrelationsspektroskopie mit Lasern wird seit vielen Jahrzehnten genutzt, um z.B. die Bewegung von Kolloiden in Lösungen zu studieren. Übertragen auf weiche Röntgenstrahlung lassen sich mit der Technik die Fluktuationen magnetischer und z.B. auch elektronischer und chemischer Unordnung in Raum und Zeit verfolgen.

Die hier beschriebenen Experimente wurden an der Advanced Light Source ALS, Kalifornien, durchgeführt.

Mit zukünftigen Röntgenquellen wie BESSY III, die um viele Größenordnungen intensivere kohärente Röntgenstrahlung erzeugen werden als heutige Quellen, wird es möglich werden, diese Technik auf schnellere Fluktuationen und kürzere Längenskalen auszuweiten und damit Effekte zu beobachten, die bisher nicht erreichbar sind.

Christian Schüßler-Langeheine

Das könnte Sie auch interessieren

  • Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Science Highlight
    30.11.2022
    Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.
  • Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Science Highlight
    30.11.2022
    Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Nanodiamant-Materialien besitzen Potenzial als preisgünstige Photokatalysatoren. Doch bisher benötigten solche Kohlenstoff-Nanopartikel energiereiches UV-Licht, um aktiv zu werden. Das DIACAT-Konsortium hat daher Variationen von Nanodiamant-Materialien hergestellt und analysiert. Die Arbeit zeigt: Wenn die Oberfläche der Nanopartikel mit ausreichend Wasserstoff-Atomen besetzt ist, reicht auch die schwächere Energie von Licht im sichtbaren Bereich für die Anregung aus. Photokatalysatoren auf Basis von Nanodiamanten könnten in Zukunft mit Sonnenlicht CO2 oder N2 in Kohlenwasserstoffe oder Ammoniak umwandeln.
  • Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Science Highlight
    28.11.2022
    Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Feststoffbatterien ermöglichen noch höhere Energiedichten als Lithium-Ionenbatterien bei hoher Sicherheit. Einem Team um Prof. Philipp Adelhelm und Dr. Ingo Manke ist es gelungen, eine Feststoffbatterie während des Ladens und Entladens zu beobachten und hochaufgelöste 3D-Bilder zu erstellen. Dabei zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt.