Unordnung bringt quantenphysikalische Talente zum Vorschein

Der Dirac-Kegel ist typisch für Topologische Isolatoren und auf allen 6 Bildern praktisch unverändert (ARPES-Messungen an BESSY II). Der blaue Pfeil zeigt zusätzlich die Valenzelektronen im Volumen. Das Synchrotronlicht tastet beide ab und kann so den Dirac Kegel an der Oberfläche (elektrisch leitend) vom dreidimensionalen Volumen (isolierend) unterscheiden.

Der Dirac-Kegel ist typisch für Topologische Isolatoren und auf allen 6 Bildern praktisch unverändert (ARPES-Messungen an BESSY II). Der blaue Pfeil zeigt zusätzlich die Valenzelektronen im Volumen. Das Synchrotronlicht tastet beide ab und kann so den Dirac Kegel an der Oberfläche (elektrisch leitend) vom dreidimensionalen Volumen (isolierend) unterscheiden. © HZB

Quanteneffekte machen sich vor allem bei extrem tiefen Temperaturen bemerkbar, was ihren Nutzen für technische Anwendungen einschränkt. Dünnschichten aus MnSb2Te4 zeigen jedoch neue Talente, weil sie zu einem kleinen Überschuss an Mangan neigen. Offenbar sorgt die entstehende Unordnung für spektakuläre Eigenschaften: Das Material erweist sich als Topologischer Isolator und ist ferromagnetisch bis zu vergleichsweise hohen Temperaturen von 50 Kelvin, zeigen Messungen an BESSY II.  Damit kommt diese Materialklasse für Quantenbits in Frage, aber auch generell für die Spintronik oder Anwendungen in der Hochpräzisions-Metrologie.

Quanteneffekte wie der anomale Quanten-Hall-Effekt ermöglichen Sensoren mit höchster Empfindlichkeit, sind die Grundlage für spintronische Bauelemente in künftigen Informationstechnologien und auch für Qubits in Quantencomputern der Zukunft. Doch in der Regel zeigen sich die dafür relevanten Quanteneffekte nur bei sehr tiefen Temperaturen nahe dem absoluten Nullpunkt und in besonderen Materialsystemen deutlich genug, um nutzbar zu sein.

Ferromagnetischer Topologischer Isolator

Nun hat ein internationales Team um den HZB-Physiker Prof. Dr. Oliver Rader und Prof. Dr. Gunther Springholz, Universität Linz, in Dünnschichten von MnSb2Te4 zwei besonders wichtige physikalische Eigenschaften beobachtet: Solche Strukturen sind robuste Topologische Isolatoren und außerdem ferromagnetisch bis zu knapp 50 Kelvin.  „Den bislang publizierten theoretischen Betrachtungen zufolge, sollte das Material weder ferromagnetisch noch topologisch sein“, sagt Rader. „Wir haben genau diese beiden Eigenschaften nun aber experimentell nachgewiesen.“

Unordnung macht den Unterschied

Die Gruppe kombinierte Messungen von spin- und winkelaufgelöster Photoemissionsspektroskopie (ARPES) und magnetischen Röntgenzirkulardichroismus (XMCD) an BESSY II, untersuchte die Oberflächen mit Rastertunnelmikroskopie (STM) und -spektroskopie (STS), und führte weitere Untersuchungen durch. „Dadurch ist nun auch klar, warum in diesem Fall die theoretische Betrachtung zu einem anderen Resultat gekommen ist – die Theorie ging von einer ideal geordneten Struktur aus, aber wir sehen, dass die zusätzlichen Mangan-Atome zu einer gewissen Unordnung geführt haben. Das erklärt den Unterschied“, so Rader.

Robust bis zu 50 Kelvin

Die Eigenschaften sind außerordentlich robust und treten bis zu einer Temperatur von knapp 50 K auf, das liegt dreimal höher als bei den besten ferromagnetischen Systemen zuvor (siehe Nature, 2019). Damit ist dieses Material ein interessanter Kandidat für die Spintronik und sogar für Qubits.

arö


Das könnte Sie auch interessieren

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.