Royal Society of Chemistry würdigt HZB-Beitrag über hybride Perowskit-Strukturen

Das Phasendiagramm beschreibt die Temperatur-Struktur-Beziehung der Hybrid-Perowskit-Verbindung mit gemischten Haliden (MAPb(I,Br)<sub>3</sub>). Die Phasen&uuml;bergangstemperatur der Jod-reichen Mischkristalle sinkt mit steigendem Jod-Gehalt.

Das Phasendiagramm beschreibt die Temperatur-Struktur-Beziehung der Hybrid-Perowskit-Verbindung mit gemischten Haliden (MAPb(I,Br)3). Die Phasenübergangstemperatur der Jod-reichen Mischkristalle sinkt mit steigendem Jod-Gehalt. © RSC Advances

Anlässlich des 10. Geburtstags hat die Fachzeitschrift RSC Advances der Royal Society of Chemistry (RSC) die Publikation eines HZB-Teams für ihre Jubiläumszusammenstellung ausgewählt. Die Arbeit aus dem HZB gilt als einer der bedeutendsten Beiträge der letzten Jahre im Bereich Solarenergie. Die ausgewählten 23 Publikationen seien sehr häufig zitiert oder heruntergeladen worden und böten einen wertvollen Vorteil für die weitere Forschung, heißt es in der Begründung der Zeitschrift. 

Im Mittelpunkt der Publikation steht die systematische Charakterisierung von Hybrid-Perowskiten mit gemischten Haliden (MAPb(I,Br)3). Die Mischkristall-Proben wurden mittels einer lösungsbasierten Synthesemethode in Pulverform hergestellt. Das Forschungsteam aus der Abteilung „Struktur und Dynamik von Energiematerialien“ (SE-ASD) zeigte, dass die Kristallstruktur der Mischkristall-Verbindungen abhängig von der Temperatur ist.

Das Material durchläuft verschiedene Phasenübergänge und bildet dabei in Abhängigkeit von der Temperatur und der chemischen Zusammensetzung eine tetragonale oder kubische Perowskit-Struktur aus. Nun ist für diese Mischkristallreihe erstmals ein umfassendes Phasendiagramm erstellt worden, das die Temperatur-Struktur-Beziehung beschreibt. Dabei zeigte sich, dass die Phasenübergangstemperatur der Jod-reichen Mischkristalle mit steigendem Jod-Gehalt sinkt und damit die kubische Perowskit-Struktur bei Raumtemperatur stabilisiert wird.

Für die temperaturabhängigen in-situ Experimente nutzte das HZB-Team die Diffraction-Endstation der KMC-2-Beamline an BESSY II. Ergänzend bestimmte es auch die Bandlückenenergie und untersuchte die optoelektronischen Eigenschaften dieser Perowskit-Verbindungen (u.a. mit Photolumineszenz-Spektrokopie).

Die Ergebnisse führten zu einer grundlegenden strukturellen Charakterisierung dieser Perowskit-Verbindungen. Auch wenn die Untersuchung auf Pulvermaterialien basierte, sind die gewonnenen Erkenntnisse über das temperaturabhängige Verhalten dieser hybriden Halid-Perowskite auch für Dünnschichtmaterialien interessant, da sich daraus Absorber für Dünnschicht-Solarzellen herstellen lassen.      

Die Publikation wurde von Frederike Lehmann im Rahmen ihrer Doktorarbeit in der Graduiertenschule HyPerCell erstellt. Die Betreuerinnen ihrer Arbeit waren Prof. Dr. Susan Schorr und Dr. Alexandra Franz aus der HZB-Abteilung „Struktur und Dynamik von Energiematerialien“ sowie Prof. Dr. Andreas Taubert von der Universität Potsdam. „Die Publikation war eine tolle Teamleistung und wir freuen uns, dass uns die RSC ausgewählt hat“, sagt Susan Schorr.

Hier finden Sie die alle Beiträge der Jubiläumskollektion.

(sz)

Das könnte Sie auch interessieren

  • Netzwerktag der Allianz für Bauwerkintegrierte Photovoltaik am 14.02.
    Nachricht
    06.02.2023
    Netzwerktag der Allianz für Bauwerkintegrierte Photovoltaik am 14.02.
    Der 2. Netzwerktag der Allianz BIPV findet statt am 14.02.2023 von 10 bis 16 Uhr statt. Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.

  • Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Science Highlight
    27.01.2023
    Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Perowskit-Halbleiter versprechen hocheffiziente und preisgünstige Solarzellen. Allerdings reagiert das halborganische Material sehr empfindlich auf Temperaturunterschiede, was im normalen Außeneinsatz rasch zu Ermüdungsschäden führen kann. Gibt man jedoch eine dipolare Polymerverbindung zur Vorläuferlösung des Perowskits hinzu, verbessert sich die Stabilität enorm. Dies zeigt nun ein internationales Team unter der Leitung von Antonio Abate, HZB, im Fachjournal Science. Die so hergestellten Solarzellen erreichen Wirkungsgrade von deutlich über 24 Prozent, die selbst bei dramatischen Temperaturschwankungen zwischen -60 und +80 Grad Celsius über hundert Zyklen kaum sinken. Das entspricht etwa einem Jahr im Außeneinsatz.

  • Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Science Highlight
    18.01.2023
    Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Ein Wissenschaftsteam unter Leitung von Forschenden des Max-Born-Instituts in Berlin, des Helmholtz-Zentrums Berlin, des Brookhaven National Laboratory (USA) und des Massachusetts Institute of Technology (USA) hat eine neue Methode entwickelt, um mit starken Röntgenquellen Videos von Fluktuationen in Materialien auf der Nanoskala aufzunehmen. Die Methode ist in der Lage, scharfe, hochauflösende Bilder zu machen, ohne das Material durch zu starke Belichtung zu beeinträchtigen. Dafür entwickelten die Wissenschaftler*innen einen Algorithmus, der in unterbelichteten Aufnahmen Muster erkennen kann. Im Fachjournal Nature beschreiben sie die Methode des Coherent Correlation Imaging (CCI) und stellen Ergebnisse für Proben aus dünnen magnetischen Schichten vor.