Oberflächenanalytik an BESSY II: Schärfere Einblicke in Dünnschicht-Systeme

Die Illustration zeigt, wie die APECS-Messung an einem Nickel-Einkristall mit oxidierter Oberfläche funktioniert. Ein Röntgenstrahl ionisiert Atome, entweder im Nickel-Kristall oder an der Oberfläche. Die angeregten Photoelektronen von der Oberfläche und aus dem Kristall haben leicht unterschiedliche Bindungsenergien. Die Auger-Elektronen ermöglichen es, die Herkunft der Photoelektronen zu bestimmen.

Die Illustration zeigt, wie die APECS-Messung an einem Nickel-Einkristall mit oxidierter Oberfläche funktioniert. Ein Röntgenstrahl ionisiert Atome, entweder im Nickel-Kristall oder an der Oberfläche. Die angeregten Photoelektronen von der Oberfläche und aus dem Kristall haben leicht unterschiedliche Bindungsenergien. Die Auger-Elektronen ermöglichen es, die Herkunft der Photoelektronen zu bestimmen. © Martin Künsting /HZB

Grenzflächen in Halbleiter-Bauelementen oder Solarzellen spielen für ihre Funktionalität eine entscheidende Rolle. Dennoch war es bislang oft schwierig, mit spektroskopischen Verfahren angrenzende Dünnschichten getrennt zu untersuchen. Ein HZB-Team hat an BESSY II zwei verschiedene spektroskopische Methoden kombiniert und an einem Modellsystem demonstriert, wie gut die Unterscheidung damit gelingt.

Photo-Elektronen-Spektroskopie (PES) ermöglicht die chemische Analyse von Oberflächen und Halbleiterschichten. Dabei trifft ein Röntgenpuls (Photonen) auf die Probe und regt Elektronen an, die Probe zu verlassen. Mit speziellen Detektoren ist es dann möglich, Richtung und Bindungsenergie dieser Elektronen zu messen und so Auskunft über elektronische Strukturen und chemische Umgebung der Atome im Material zu erhalten. Liegen die Bindungsenergien jedoch in angrenzenden Schichten nahe beieinander, dann ist es mit PES kaum möglich, diese Schichten voneinander zu unterscheiden.

 Ein Team am HZB hat nun gezeigt, wie sich dennoch präzise Zuordnungen erreichen lassen: Sie kombinierten Photo-Elektronen-Spektroskopie mit einer zweiten spektroskopischen Methode: der Auger-Elektronen Spektroskopie. Dabei werden Photoelektronen und Auger-Elektronen zeitgleich gemessen, was der resultierenden Methode ihren Namen gibt: APECS für Auger-Elektronen-Photoelektronen-Koinzidenzspektroskopie (APECS).  

Ein Vergleich der so ermittelten Bindungsenergien lässt dann Rückschlüsse auf die jeweilige chemische Umgebung zu und ermöglicht so die Unterscheidung feinster Schichten. An einer einkristallinen Nickel-Probe, einem sehr guten Modellsystem für viele Metalle, konnte das Team nun zeigen, wie gut das funktioniert: Die Physiker konnten aus den Messdaten präzise die Verschiebung der Bindungsenergie der Elektronen ermitteln, je nachdem, ob diese aus der dünnen oxidierten Oberfläche oder aus den tieferen Kristallschichten stammten.

„Zunächst waren wir skeptisch, ob es gelingen würde, aus den Daten wirklich eine klare Unterscheidung herauszulesen. Wir waren begeistert über den deutlichen Effekt“, sagt Artur Born, Erstautor der Arbeit, der im Team von Prof. Alexander Föhlisch seine Doktorarbeit macht.

arö


Das könnte Sie auch interessieren

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.