Germany on the road to net zero: a new Web Atlas shows the options

Which technical and nature-based options as well as political decisions can support Germany in being CO2-neutral? These questions are answered by the new web atlas of the Climate Service Center Germany (GERICS) at the Helmholtz-Zentrum Hereon. The new tool is aimed at politicians, experts and the public. The HZB has also contributed to the web atlas.

Since July 2019, the Helmholtz Climate Initiative is working to congregate all expertise in the Helmholtz Research Centers on climate issues. One result is a comprehensive web atlas on which Helmholtz researchers from all disciplines have contributed. The online atlas clearly presents the current state of knowledge and is constantly updated.

The content is presented in a comprehensible way and the depth of information can be freely selected so that relevant information can be found quickly and easily. Markings indicate the three information levels "Overview", "Practice", "Background".

The atlas is divided into four chapters: Technological Lever, Decision Support Lever, Roadmaps under the United Nations Framework Convention on Climate Change (UNFCCC) and Partner Centres of Net Zero-2050.

The HZB contributions are in the chapter on technological levers. Björn Rau has compiled information on building-integrated photovoltaics and Matthew Mayer has contributed to two articles on the electrochemical conversion of CO2.

Digital knowledge transfer

"The web atlas is about digital knowledge transfer," says Daniela Jacob, director of GERICS. "It acts as a showcase for the research contributions of a total of ten Helmholtz Centres that have contributed their expertise to the Net Zero 2050 project."  

"The contributions of our partners are presented in two different formats such as georeferenced maps with explanatory text or as a picture story with accompanying text," explains Swantje Preuschmann from GERICS, who heads the Web Atlas project. "On the one hand, the atlas should convey scientifically based facts, but on the other hand it should also be intuitive and playful to experience."

Triggering dialogue

The tool is intended to contribute to a broad dialogue in society and facilitate the transfer of knowledge from science to actors in politics, public administration and other "climate-relevant" decision-makers. This should help to actually make Germany CO2-neutral by the middle of this century.

Further information: https://atlas.netto-null.org

HEREON/red.


You might also be interested in

  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).
  • The future of BESSY
    News
    07.03.2024
    The future of BESSY
    At the end of February 2024, a team at HZB published an article in Synchrotron Radiation News (SRN). They describe the next development goals for the light source as well as the BESSY II+ upgrade programme and the successor source BESSY III.

  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.