Ein elektronischer Regenbogen: Perowskit-Spektrometer mit Tintenstrahldrucker

© AdobeStock_180217487_Rainbow colored equalizer effect

Mit drei Perowskit-Vorläufertinten können unterschiedliche  Metallhalogenidperowskite gedruckt werden.

Mit drei Perowskit-Vorläufertinten können unterschiedliche  Metallhalogenidperowskite gedruckt werden. © 10.1002/adem.202101111

Mit einem Tintenstrahldruckverfahren haben Teams aus dem Innovation Lab HySPRINT am Helmholtz-Zentrum Berlin (HZB) und der Humboldt-Universität zu Berlin (HU) Photodetektoren auf Basis von hybriden Perowskit-Halbleitern produziert. Durch gezieltes Abmischen von nur drei „Tinten“ konnten sie die Eigenschaften des Halbleiters während des Druckvorgangs präzise einstellen. Der Tintenstrahldruck ist in der Industrie eine etablierte Herstellungsmethode, die eine schnelle und kostengünstige Verarbeitung von Lösungen ermöglicht. Die Ausweitung von der großflächigen Beschichtung auf die kombinatorische Materialsynthese eröffnet neue Möglichkeiten für die Herstellung verschiedener elektronischer Komponenten in einem einzigen Druckschritt.

Metallhalogenid-Perowskite sind eine faszinierende Materialklasse mit einem breiten Spektrum von möglichen Anwendungen in der Optoelektronik und Photovoltaik. Die Herstellung elektronischer Bauteile mit diesem Material ist besonders attraktiv, weil sie aus einer Lösung, d. h. aus einer Tinte, möglich ist. Kommerziell erhältliche Salze werden in einem Lösungsmittel gelöst und dann auf ein Substrat aufgebracht. Die Gruppe um Prof. Emil List-Kratochvil, Leiter einer gemeinsamen Forschungsgruppe am HZB und der HU, konzentriert sich darauf, solche Bauelemente mit Hilfe von Herstellungsverfahren wie dem Tintenstrahldruck herzustellen. Der Drucker trägt die Tinte auf ein Substrat auf und nach dem Trocknen bildet sich ein dünner Halbleiterfilm. Durch die Kombination mehrerer Schritte mit verschiedenen Materialien lassen sich Solarzellen, LEDs oder Photodetektoren in wenigen Minuten herstellen.

Kombinatorischer Ansatz

Der Tintenstrahldruck ist in der Industrie bereits eine etablierte Technik, nicht nur für Zeitungen und Zeitschriften, sondern auch für Funktionsmaterialien. Metallhalogenid-Perowskite sind für den Tintenstrahldruck besonders interessant, da ihre Eigenschaften durch ihre chemische Zusammensetzung eingestellt werden können. Forschungsgruppen am HZB haben bereits Solarzellen und LEDs aus Perowskiten im Tintenstrahldruck hergestellt. Diese Fähigkeiten wurden 2020 weiter ausgebaut, als die Gruppe von Dr. Eva Unger erstmals einen kombinatorischen Ansatz für den Tintenstrahl-Druck nutzte, um verschiedene Perowskit-Zusammensetzungen auf der Suche nach einem besseren Solarzellenmaterial zu drucken.

Gedrucktes Spektrometer

In der aktuellen Arbeit hat das Team um Prof. Emil List-Kratochvil nun eine spannende Anwendung für eine große Perowskit-Serie in wellenlängenselektiven Photodetektoren gefunden. "Der kombinatorische Tintenstrahldruck kann nicht nur zum Screening verschiedener Materialzusammensetzungen für Solarzellenmaterialien verwendet werden", erklärt er, "sondern ermöglicht uns auch die Herstellung mehrerer, separater Bauelemente in einem einzigen Druckschritt." Im Hinblick auf ein industrielles Verfahren würde dies die Produktion der unterschiedlichsten elektronischen Bauelemente ermöglichen. In Kombination mit gedruckten elektronischen Schaltkreisen würden Photodetektoren ein einfaches Spektrometer bilden: papierdünn, auf eine beliebige Oberfläche gedruckt, potenziell flexibel, ohne die Notwendigkeit eines Prismas oder Gitters zur Trennung der eingehenden Wellenlängen.

 

Vincent Schröder und Felix Hermerschmidt

Das könnte Sie auch interessieren

  • Tiburtius-Preis für Eike Köhnen
    Nachricht
    07.12.2022
    Tiburtius-Preis für Eike Köhnen
    Am Dienstag, den 6.12.2022 erhielt Dr. Eike Köhnen den Tiburtius-Preis (Erster Platz) für seine herausragende Dissertation. Eike Köhnen hat dazu beigetragen, den Wirkungsgrad von Tandemsolarzellen aus Perowskit und Silizium deutlich zu steigern, bis hin zu Weltrekord-Werten.
  • Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Science Highlight
    30.11.2022
    Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Nanodiamant-Materialien besitzen Potenzial als preisgünstige Photokatalysatoren. Doch bisher benötigten solche Kohlenstoff-Nanopartikel energiereiches UV-Licht, um aktiv zu werden. Das DIACAT-Konsortium hat daher Variationen von Nanodiamant-Materialien hergestellt und analysiert. Die Arbeit zeigt: Wenn die Oberfläche der Nanopartikel mit ausreichend Wasserstoff-Atomen besetzt ist, reicht auch die schwächere Energie von Licht im sichtbaren Bereich für die Anregung aus. Photokatalysatoren auf Basis von Nanodiamanten könnten in Zukunft mit Sonnenlicht CO2 oder N2 in Kohlenwasserstoffe oder Ammoniak umwandeln.
  • Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Science Highlight
    30.11.2022
    Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.