An electronic rainbow – perovskite spectrometer by inkjet printing

© AdobeStock_180217487_Rainbow colored equalizer effect

Combinatorial printing allows precise control of the mixing of perovskite precursor inks during film fabrication. This leads to a compositional halide gradient in methylammonium-based metal halide perovskites. The resulting distinct perovskite phases are confirmed by the gradual shift of lattice parameters shown in XRD diffraction patterns.

Combinatorial printing allows precise control of the mixing of perovskite precursor inks during film fabrication. This leads to a compositional halide gradient in methylammonium-based metal halide perovskites. The resulting distinct perovskite phases are confirmed by the gradual shift of lattice parameters shown in XRD diffraction patterns. © 10.1002/adem.202101111

Researchers from Innovation Lab HySPRINT at Helmholtz-Zentrum Berlin (HZB) and Humboldt Universität zu Berlin (HU) have used an advanced inkjet printing technique to produce a large range of photodetector devices based on a hybrid perovskite semiconductor. By mixing of only three inks, the researchers were able to precisely tune the semiconductor properties during the printing process. Inkjet printing is already an established fabrication method in industry, allowing fast and cheap solution processing. Extending the inkjet capabilities from large area coating towards combinatorial material synthesis opens the door for new possibilities for the fabrication of different kind of electronic components in a single printing step.

Metal halide perovskites are fascinating to researchers in academia and industry with the large range of possible applications. The fabrication of electronic components with this material is particularly appealing, because it is possible from solution, i.e. from an ink. Commercially available salts are dissolved in a solvent and then deposited on a substrate. The group around Prof. Emil List-Kratochvil, head of a joint research group at HZB and HU, focusses on building these types of devices using advanced fabrication methods such as inkjet printing. The printer spreads the ink on a substrate and, after drying, a thin semiconductor film forms. Combining multiple steps with different materials allows to produce solar cells, LEDs or photodetectors in mere minutes.

Inkjet printing is already an established technique in industry, not only for newspapers and magazines, but also for functional materials. Metal halide perovskites are specifically interesting for inkjet printing, as their properties can be tuned by their chemical make-up. Researcher at HZB have already used inkjet printing to fabricate solar cells and LEDs made from perovskites. The inkjet capabilities were further expanded in 2020, when the group of Dr. Eva Unger first used a combinatorial approach to inkjet printing, to print different perovskite compositions in search of a better solar cell material.

Combinatorial printing approach towards industrial production of electronic devices

Now, in this current work, the team around Prof. Emil List-Kratochvil found an exciting application for a large perovskite series within wavelength-selective photodetector devices. “Combinatorial inkjet printing cannot only be used to screen different compositions of materials for solar cell materials,” he explains, “but also enables us to fabricate multiple, separate devices in a single printing step.” Looking towards an industrial process, this would enable large scale production of multiple electronic devices. Combined with printed electronic circuits, the photodetectors would form a simple spectrometer: paper thin, printed on any surface, potentially flexible, without the need of a prism or grid to separate the incoming wavelengths.

Note: Emil List-Kratochvil is Professor of Hybrid Devices at Humboldt-Universität zu Berlin, member of IRIS Adlershof and head of a Joint Lab founded in 2018 that is operated by HU together with HZB. In addition, a team jointly headed by List-Kratochvil and HZB scientist Dr. Eva Unger is working in the Helmholtz Innovation Lab HySPRINT at HZB on the development of coating and printing processes for hybrid perovskites.


Vincent Schröder und Felix Hermerschmidt

You might also be interested in

  • Tomography shows high potential of copper sulphide solid-state batteries
    Science Highlight
    28.11.2022
    Tomography shows high potential of copper sulphide solid-state batteries
    Solid-state batteries enable even higher energy densities than lithium-ion batteries with high safety. A team led by Prof. Philipp Adelhelm and Dr. Ingo Manke succeeded in observing a solid-state battery during charging and discharging and creating high-resolution 3D images. This showed that cracking can be effectively reduced through higher pressure.

  • European pilot line for innovative photovoltaic technology based on tandem solar cells
    News
    23.11.2022
    European pilot line for innovative photovoltaic technology based on tandem solar cells
    PEPPERONI, a four-year Research and Innovation project co-funded under Horizon Europe and jointly coordinated by Helmholtz-Zentrum Berlin and Qcells, will support Europe in reaching its renewable energy target of climate neutrality by 2050. The project will help advance perovskite/silicon tandem photovoltaics (PV) technology’s journey towards market introduction and mass manufacturing.
  • Quantum algorithms save time in the calculation of electron dynamics
    Science Highlight
    22.11.2022
    Quantum algorithms save time in the calculation of electron dynamics
    Quantum computers promise significantly shorter computing times for complex problems. But there are still only a few quantum computers worldwide with a limited number of so-called qubits. However, quantum computer algorithms can already run on conventional servers that simulate a quantum computer. A team at HZB has succeeded to calculate the electron orbitals and their dynamic development on the example of a small molecule after a laser pulse excitation. In principle, the method is also suitable for investigating larger molecules that cannot be calculated using conventional methods.