Prognose des Wirkungsgrads von Solarzellen mit Terahertz- und Mikrowellenspektroskopie

Im Femtosekunden-Laserlabor von Dr. Dennis Friedrich (HZB) kann der Ladungstransport in Halbleitern mit Teraherz- und Mikrowellen Spektroskopie untersucht werden. Dafür generieren Laserpulse zuerst Ladungsträger im Material, welche dann proportional zu ihrer Mobilität langwellige Strahlung (Terahertz oder Mikrowellen) absorbieren.

Im Femtosekunden-Laserlabor von Dr. Dennis Friedrich (HZB) kann der Ladungstransport in Halbleitern mit Teraherz- und Mikrowellen Spektroskopie untersucht werden. Dafür generieren Laserpulse zuerst Ladungsträger im Material, welche dann proportional zu ihrer Mobilität langwellige Strahlung (Terahertz oder Mikrowellen) absorbieren. © HZB

Viele unterschiedliche Halbleitermaterialien kommen für Solarzellen in Frage. In den letzten Jahren haben insbesondere die Perowskit-Halbleiter Aufsehen erregt, die sowohl preiswert als auch leicht zu verarbeiten sind und hohe Wirkungsgrade ermöglichen. Nun zeigt eine Studie mit 15 Forschungseinrichtungen, wie sich mit Terahertz- (TRTS) und Mikrowellen-Spektroskopie (TRMC) zuverlässig Mobilität und Lebensdauer der Ladungsträger ermitteln lassen. Aus diesen Messdaten ist es möglich, den potenziellen Wirkungsgrad der Solarzelle vorherzusagen und die Verluste in der fertigen Zelle einzuordnen.  


Zu den wichtigsten Materialeigenschaften eines Halbleiters, der als Solarzelle verwendet werden soll, zählen Mobilität und Lebensdauer von Elektronen und „Löchern“. Beide Größen lassen sich kontaktlos mit Hilfe von spektroskopischen Methoden mit Terahertz- bzw- Mikrowellenstrahlung messen. Allerdings unterscheiden sich die Messdaten aus der Literatur oft um Größenordnungen, so dass es schwierig war, daraus zuverlässige Berechnungen abzuleiten.

Referenzproben gemessen

„Diesen Unterschieden wollten wir auf den Grund gehen“, sagt Dr. Hannes Hempel aus dem HZB-Team um Dr. Thomas Unold. Dafür haben die HZB-Physiker Fachleute aus insgesamt 15 internationalen Laboren eingebunden und gemeinsam mit ihnen typische Fehlerquellen und Probleme der Messungen analysiert. Jedes Labor erhielt Referenzproben mit der auf Stabilität optimierten Perowskit-Halbleiterverbindung (Cs,FA,MA)Pb(I,Br)3). Die Proben wurden von Dr. Martin Stolterfoht an der Universität Potsdam produziert.

Präzise Daten für die Prognose

Ein Ergebnis der gemeinsamen Arbeit ist die deutlich präzisere Ermittlung der Transporteigenschaften mit Terahertz- bzw Mikrowellenspektroskopie „Wir wissen nun, worauf wir im Vorfeld der Messungen achten müssen und kommen so zu deutlich besser übereinstimmenden Werten“, betont Hempel.

Ein weiteres Ergebnis ist, dass sich mit diesen zuverlässigen Messdaten und einer weiter-entwickelten Analyse auch die Kennlinien der Solarzelle präziser berechnen lassen. „Wir glauben, dass diese Analyse für die Photovoltaik-Forschung von großem Interesse ist, weil sie den maximal möglichen Wirkungsgrad des Materials in einer Solarzelle vorhersagt und den Einfluss verschiedener Verlustmechanismen, wie Transportbarrieren, offenlegt“, sagt Unold. Dies gilt nicht nur für die Materialklasse der Perowskit-Halbleiter, sondern auch für andere neue halbleitende Materialien, die sich so rasch auf ihre mögliche Eignung überprüfen lassen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Postdocs am HZB: Unverzichtbar für Forschung, Innovation und Vielfalt
    Nachricht
    16.09.2024
    Postdocs am HZB: Unverzichtbar für Forschung, Innovation und Vielfalt
    Am Helmholtz-Zentrum Berlin (HZB) arbeiten derzeit 117 Postdocs aus 29 Ländern. Sie spielen eine zentrale Rolle in der Forschung und treiben Innovation und Kreativität voran. Um ihre wertvolle Arbeit zu würdigen, wurde 2009 in den USA die Postdoc Appreciation Week ins Leben gerufen, die mittlerweile auch in Deutschland jährlich in der dritten Septemberwoche gefeiert wird.

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Nachricht
    04.09.2024
    SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Bevor Lebensmittel verderben bilden sich meist bestimmte reaktionsfreudige Moleküle, sogenannte freie Radikale. Bisher war der Nachweis dieser Moleküle für Lebensmittelunternehmen sehr kostspielig. Ein Team aus HZB und Universität Stuttgart hat nun einen tragbaren und kostengünstigen „EPR-on-a-Chip“-Sensor entwickelt, der freie Radikale auch in geringsten Konzentrationen nachweisen kann. Nun bereitet das Team die Gründung eines Spin-off-Unternehmens vor, gefördert durch das EXIST-Forschungstransferprogramm des Bundesministeriums für Wirtschaft und Klimaschutz. Der EPRoC-Sensor soll zunächst bei der Herstellung von Olivenöl und Bier eingesetzt werden, um die Qualität dieser Produkte zu sichern.