Prognose des Wirkungsgrads von Solarzellen mit Terahertz- und Mikrowellenspektroskopie

Im Femtosekunden-Laserlabor von Dr. Dennis Friedrich (HZB) kann der Ladungstransport in Halbleitern mit Teraherz- und Mikrowellen Spektroskopie untersucht werden. Dafür generieren Laserpulse zuerst Ladungsträger im Material, welche dann proportional zu ihrer Mobilität langwellige Strahlung (Terahertz oder Mikrowellen) absorbieren.

Im Femtosekunden-Laserlabor von Dr. Dennis Friedrich (HZB) kann der Ladungstransport in Halbleitern mit Teraherz- und Mikrowellen Spektroskopie untersucht werden. Dafür generieren Laserpulse zuerst Ladungsträger im Material, welche dann proportional zu ihrer Mobilität langwellige Strahlung (Terahertz oder Mikrowellen) absorbieren. © HZB

Viele unterschiedliche Halbleitermaterialien kommen für Solarzellen in Frage. In den letzten Jahren haben insbesondere die Perowskit-Halbleiter Aufsehen erregt, die sowohl preiswert als auch leicht zu verarbeiten sind und hohe Wirkungsgrade ermöglichen. Nun zeigt eine Studie mit 15 Forschungseinrichtungen, wie sich mit Terahertz- (TRTS) und Mikrowellen-Spektroskopie (TRMC) zuverlässig Mobilität und Lebensdauer der Ladungsträger ermitteln lassen. Aus diesen Messdaten ist es möglich, den potenziellen Wirkungsgrad der Solarzelle vorherzusagen und die Verluste in der fertigen Zelle einzuordnen.  


Zu den wichtigsten Materialeigenschaften eines Halbleiters, der als Solarzelle verwendet werden soll, zählen Mobilität und Lebensdauer von Elektronen und „Löchern“. Beide Größen lassen sich kontaktlos mit Hilfe von spektroskopischen Methoden mit Terahertz- bzw- Mikrowellenstrahlung messen. Allerdings unterscheiden sich die Messdaten aus der Literatur oft um Größenordnungen, so dass es schwierig war, daraus zuverlässige Berechnungen abzuleiten.

Referenzproben gemessen

„Diesen Unterschieden wollten wir auf den Grund gehen“, sagt Dr. Hannes Hempel aus dem HZB-Team um Dr. Thomas Unold. Dafür haben die HZB-Physiker Fachleute aus insgesamt 15 internationalen Laboren eingebunden und gemeinsam mit ihnen typische Fehlerquellen und Probleme der Messungen analysiert. Jedes Labor erhielt Referenzproben mit der auf Stabilität optimierten Perowskit-Halbleiterverbindung (Cs,FA,MA)Pb(I,Br)3). Die Proben wurden von Dr. Martin Stolterfoht an der Universität Potsdam produziert.

Präzise Daten für die Prognose

Ein Ergebnis der gemeinsamen Arbeit ist die deutlich präzisere Ermittlung der Transporteigenschaften mit Terahertz- bzw Mikrowellenspektroskopie „Wir wissen nun, worauf wir im Vorfeld der Messungen achten müssen und kommen so zu deutlich besser übereinstimmenden Werten“, betont Hempel.

Ein weiteres Ergebnis ist, dass sich mit diesen zuverlässigen Messdaten und einer weiter-entwickelten Analyse auch die Kennlinien der Solarzelle präziser berechnen lassen. „Wir glauben, dass diese Analyse für die Photovoltaik-Forschung von großem Interesse ist, weil sie den maximal möglichen Wirkungsgrad des Materials in einer Solarzelle vorhersagt und den Einfluss verschiedener Verlustmechanismen, wie Transportbarrieren, offenlegt“, sagt Unold. Dies gilt nicht nur für die Materialklasse der Perowskit-Halbleiter, sondern auch für andere neue halbleitende Materialien, die sich so rasch auf ihre mögliche Eignung überprüfen lassen.

arö


Das könnte Sie auch interessieren

  • Sauberer Brennstoff zum Kochen für das südliche Afrika hat große Wirkung
    Nachricht
    19.04.2024
    Sauberer Brennstoff zum Kochen für das südliche Afrika hat große Wirkung
    Das Verbrennen von Biomasse beim Kochen belastet Gesundheit und Umwelt. Die deutsch-südafrikanische Initiative GreenQUEST entwickelt einen sauberen Haushaltsbrennstoff. Er soll klimaschädliche CO2-Emissionen reduzieren und den Zugang zu Energie für Haushalte in afrikanischen Ländern südlich der Sahara verbessern.

  • Quantsol Summer School 2024 - jetzt bewerben!
    Nachricht
    17.04.2024
    Quantsol Summer School 2024 - jetzt bewerben!
    Vom 1. bis 8. September informiert die Quantsol Summer School 2024 über Grundlagen der solaren Energieumwandlung.

    Die International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) findet im September 2024 in Hirschegg, Kleinwalsertal, Österreich statt. Bewerbungen können bis zum 31. Mai 2024, 23:59 Uhr MEZ eingereicht werden. Organisiert wird die Schule vom Helmholtz-Zentrum Berlin und der Technischen Universität Ilmenau.

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.