Fermi Arcs in an Antiferromagnet detected at BESSY II

The Fermi surface of antiferromagnetic NdBi taken at 6 K temperature at BESSY II. It shows so called Fermi arcs.

The Fermi surface of antiferromagnetic NdBi taken at 6 K temperature at BESSY II. It shows so called Fermi arcs. © https://www.nature.com/articles/s41586-022-04412-x.

An international cooperation has analysed samples of NdBi crystals which display interesting magnetic properties. In their experiments including measurements at BESSY II they could find evidence for so called Fermi arcs in the antiferromagnetic state of the sample at low temperatures. This observation is not yet explained by existing theoretical ideas and opens up exciting possibilities to make use of these kind of materials for innovative information technologies based on the electron spin rather than the charge.


Neodymium-Bismuth crystals belong to the wide range of materials with interesting magnetic properties. The Fermi surface which is measured in the experiments contains information on the transport properties of charge carriers in the crystal. While usually the Fermi surface consists of closed contours, disconnected sections known as Fermi arcs are very rare and can be signatures of unusual electronic states.

Unusual magnetic splittings

In a study, published now in Nature, the team presents experimental evidence for such Fermi arcs. They observed an unusual magnetic splitting in the antiferromagnetic state of the samples below a temperature of 24 Kelvin (the Néel-temperature). This splitting creates bands of opposing curvature, which changes with temperature together with the antiferromagnetic order.

These findings are very important because they are fundamentally different from previously theoretically considered and experimentally reported cases of magnetic splittings. In the case of well-known Zeeman and Rashba splittings, the curvature of the bands is always preserved. Since both splittings are important for spintronics, these new findings could lead to novel applications, especially as the focus of spintronics research is currently moving from traditional ferromagnetic to antiferromagnetic materials.

arö

You might also be interested in

  • Deputy Prime Minister of Singapore visits HZB
    News
    21.06.2022
    Deputy Prime Minister of Singapore visits HZB
    On Friday, 17 June, a delegation from Singapore visited HZB. Heng Swee Keat, Deputy Prime Minister of Singapore, was accompanied by the Ambassador to Singapore in Berlin, Laurence Bay, as well as representatives from research and industry.
  • Calculating the "fingerprints" of molecules with artificial intelligence
    Science Highlight
    13.06.2022
    Calculating the "fingerprints" of molecules with artificial intelligence
    With conventional methods, it is extremely time-consuming to calculate the spectral fingerprint of larger molecules. But this is a prerequisite for correctly interpreting experimentally obtained data. Now, a team at HZB has achieved very good results in significantly less time using self-learning graphical neural networks.
  • Water distribution in the fuel cell made visible in 4D
    Science Highlight
    02.06.2022
    Water distribution in the fuel cell made visible in 4D
    Teams from Helmholtz-Zentrum Berlin (HZB) and University College London (UCL) have visualised the water distribution in a fuel cell in three dimensions and in real time for the first time by evaluating neutron data from the Berlin Experimental Reactor shut down in 2019. The analysis opens new possibilities for more efficient and thus more cost-effective fuel cells.