Forschende entdecken, warum Sehnen stark wie Drahtseile sind

Unter dem Elektronenmikroskop: Kollagenfaserbündel nach der Mineralisation mit dem Knochenmineral Kalziumphosphat

Unter dem Elektronenmikroskop: Kollagenfaserbündel nach der Mineralisation mit dem Knochenmineral Kalziumphosphat © Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Ein Team am Max-Planck-Institut für Kolloid- und Grenzflächenforschung (MPIKG) hat mithilfe von BESSY II neue Eigenschaften des Kollagens entdeckt: Während der Einlagerung von Mineralen in Kollagenfasern entsteht eine Kontraktionsspannung, die hundertfach stärker ist als die von Muskelkraft. Die Veränderungen der Kollagenstruktur wurden mittels Röntgenbeugung an der Synchrotronsstrahlungsquelle BESSY II in Berlin-Adlershof beobachtet, während die Mineralisation stattfand.

„Dieser universelle Mechanismus der Mineralisation von organischen Fasergeweben könnte auf technische Hybridmaterialien übertragen werden, um dort beispielsweise eine hohe Bruchfestigkeit zu erreichen,“ sagt Prof. Dr. Dr.h.c. Peter Fratzl, Direktor am MPIKG.

Das faserbildende Strukturprotein Kollagen kommt unter anderem in Sehnen, der Haut und Knochen vor.  Aus medizinischer bzw. biologischer Sicht ist es interessant zu verstehen, was beim Prozess der Mineralisation in Knochen passiert. Viele Knochenkrankheiten gehen mit Veränderungen des Mineralgehalts in Knochen und dadurch veränderten Eigenschaften einher.

Lesen Sie die vollständige Presseinformation auf der Webseite des MPIKG.

(red/sz)

Das könnte Sie auch interessieren

  • Shutdown bei BESSY II: Neue Versorgungstechnik sichert langfristig den Betrieb
    Nachricht
    20.05.2022
    Shutdown bei BESSY II: Neue Versorgungstechnik sichert langfristig den Betrieb
    Die Röntgenquelle BESSY II befindet sich in einem dreimonatigen Shutdown. In dieser Zeit wird die Niederspannungshauptverteilung im Versorgungsgebäude außerhalb des Elektronenspeicherrings erneuert. Dies sichert den langfristigen stabilen Betrieb von BESSY II über das nächste Jahrzehnt hinaus.

  • Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Science Highlight
    17.05.2022
    Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Magnetische Nanostrukturen sind vielversprechende Werkzeuge für medizinische Anwendungen. Eingebaut in biologische Vehikel, lassen sich diese dann durch externe Magnetfelder an ihren Einsatzort im Körper steuern, wo sie Medikamente freisetzen oder Krebszellen zerstören können. Dazu ist jedoch die genaue Kenntnis der magnetischen Eigenschaften solcher Nanoteilchen nötig. Bisher konnten solche Informationen nur gemittelt über tausende Nanopartikel gewonnen werden. Nun hat ein Team am HZB eine Methode entwickelt, um die charakteristischen Parameter jedes einzelnen magnetischen Nanopartikels zu bestimmen.
  • Royaler Besuch aus Schweden am HZB
    Nachricht
    16.05.2022
    Royaler Besuch aus Schweden am HZB

    Der König Carl XVI. Gustaf von Schweden sowie eine Gruppe Unternehmenslenker großer Konzerne wie Ericsson, Nordholt, Vattenfall, ABB, Schneider Electric und schwedische Vertreter aus dem öffentlichen Sektor und der Wissenschaft besuchten am 11. Mai 2022 den Technologiepark Adlershof.