HZB hosts Humboldt Research Award Winner Alexei Gruverman

An award by Humboldt-foundation enables Professor Alexei Gruverman to visit the HZB institute "Functional oxides for energy efficient information technology". 

An award by Humboldt-foundation enables Professor Alexei Gruverman to visit the HZB institute "Functional oxides for energy efficient information technology".  © privat

Professor Alexei Gruverman was granted a Humboldt Research Award in October 2020.  Due to the COVID pandemic, he could not travel until this year. For a few months he is now hosted by Helmholtz-Zentrum Berlin at the Institute “Functional oxides for energy efficient information technology”. 

The renowned award is endowed with 60 000 Euros and is presented annually by the Alexander von Humboldt Foundation to outstanding scientists from abroad to support collaborative projects with researchers in Germany.

“We are very much honored and happy to welcome Alexei Gruverman at the HZB. He is a worldwide leading scientist in the field of nanoscale ferroelectrics. We will further develop our cooperation with him on several topics”, says Prof. Catherine Dubourdieu, head of the institute “Functional oxides for energy efficient information technology” at HZB.  

Professor Alexei Gruverman is a Charles Bessey Professor at the Department of Physics and Astronomy, University of Nebraska-Lincoln, USA. His research includes diverse scientific subjects from nanoscale static and dynamic properties of ferroic materials, to electronic properties of polar surfaces, and electromechanical properties of biomaterials.

The Humboldt Research Award recognizes his outstanding research achievements in the field of fundamental studies of nanoscale physical phenomena in a wide range of materials using a variety of scanning probe microscopy (SPM) methods. Gruverman has pioneered the development of piezoresponse force microscopy (PFM), which since its inception has become a method of choice in both academic and industrial groups for the investigation of the nanoscale properties of ferroelectric materials and structures. Other major scientific accomplishments include the manipulation of ferroelectric domains at the nanoscale, the development of an approach for fast switching dynamics in ferroelectric capacitors, the demonstration of the tunneling electroresistance effect in ferroelectrics and nanoscale studies of electromechanical behavior of biological systems.

His current research topics include the emergence of the ferroelectric ordering in 2D electronic materials and the exploration of the physical mechanism of their polarization-coupled transport properties.

Gruverman plans to spend this first stay associated with the Humboldt Research Award in Germany at the HZB in Berlin and NamLab in Dresden.

Institute Functional Oxides for Energy-Efficient IT


You might also be interested in

  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).
  • Sebastian Keckert wins Young Scientist Award for Accelerator Physics
    News
    21.03.2024
    Sebastian Keckert wins Young Scientist Award for Accelerator Physics
    Dr Sebastian Keckert has been awarded the Young Scientist Award for Accelerator Physics of the German Physical Society (DPG). The prize is endowed with 5000 euros and was presented to him on 21.03. during the spring conference in Berlin. It honours the physicist's outstanding achievements in the development of new superconducting thin-film material systems for cavities.

  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.