Potentialflächen von Wasser erstmals kartiert

Flüssigkeiten sind schwerer zu beschreiben als Gase oder kristalline Feststoffe. Aber nun ist es einem HZB-Team gelungen, die Energieflächen von Wassermolekülen zu kartieren. Dies hilft zum Beispiel, die Chemie in Wasser besser zu verstehen.

Flüssigkeiten sind schwerer zu beschreiben als Gase oder kristalline Feststoffe. Aber nun ist es einem HZB-Team gelungen, die Energieflächen von Wassermolekülen zu kartieren. Dies hilft zum Beispiel, die Chemie in Wasser besser zu verstehen. © stock.adobe.com

Flüssigkeiten sind schwerer zu beschreiben als Gase oder kristalline Feststoffe. Ein HZB-Team hat nun an der Swiss Light Source SLS des Paul Scherrer Instituts, Schweiz, erstmals die Potentialflächen von Wassermolekülen in flüssigem Wasser unter normalen Umgebungsbedingungen kartiert. Das trägt dazu bei, die Chemie des Wassers und in wässrigen Lösungen besser zu verstehen. Diese Untersuchungen können demnächst an der neu errichteten METRIXS-Station an der Röntgenquelle BESSY II fortgesetzt werden.

 

Wasser ist die bekannteste Flüssigkeit der Welt. In allen biologischen und vielen chemischen Prozessen spielt Wasser eine entscheidende Rolle. Die Wassermoleküle selbst bergen kaum noch ein Geheimnis. Schon in der Schule lernen wir, dass Wasser aus einem Sauerstoff-Atom und zwei Wasserstoff-Atomen besteht. Wir kennen sogar den typischen stumpfen Winkel, den die beiden O-H-Schenkel miteinander bilden. Außerdem wissen wir natürlich, wann Wasser kocht oder gefriert und wie diese Phasenübergänge mit dem Druck zusammenhängen. Aber zwischen der Kenntnis des einzelnen Moleküls und dem Wissen über die makroskopischen Phänomene klafft ein weiter Bereich des Ungefähren: Ausgerechtet über das Verhalten der einzelnen Moleküle in ganz normalem flüssigem Wasser ist nur Statistisches bekannt, die Wassermoleküle bilden ein fluktuierendes Netz aus Wasserstoffbrücken, ungeordnet und dicht und ihre Wechselwirkungen sind überhaupt nicht so gut verstanden wie im gasförmigen Zustand.

Reines Wasser mit RIXS untersucht

Nun hat ein Team um die HZB-Physikerin Dr. Annette Pietzsch hochreines, flüssiges Wasser bei Zimmertemperatur und normalem Druck unter die Lupe genommen. Mit Röntgenuntersuchungen an der Swiss Light Source des Paul Scherrer Instituts und statistischen Modellierungen ist es den Forscher:innen erstmals gelungen, die so genannten Potentialflächen der einzelnen Wassermoleküle im Grundzustand zu kartieren, die je nach Umgebung vielfältige Gestalt annehmen.

Potentialflächen vermessen

„Das Besondere ist hier die Methode: Wir haben die Wassermoleküle an der ADRESS-Beamline mit resonanter inelastischer Röntgenstreuung untersucht. Einfach ausgedrückt haben wir einzelne Moleküle nur ganz vorsichtig angeschubst und dann gemessen, wie sie in den Grundzustand zurückfallen“, sagt Pietzsch. Die niederenergetischen Anregungen führten zu Streckschwingungen und anderen Vibrationen, durch die sich – kombiniert mit Modellrechnungen – ein detailliertes Bild der Potentialoberflächen ergab.

„Damit haben wir eine Methode, um experimentell die Energie eines Moleküls in Abhängigkeit von seiner Struktur zu ermitteln“, erläutert Pietzsch. „Das hilft, die Chemie im Wasser zu verstehen, also auch mehr zu durchblicken, wie sich Wasser als Lösungsmittel verhält.“

Ausblick auf METRIXS an BESSY II

Die nächsten Experimente sind schon in Vorbereitung, und zwar an der Röntgenquelle BESSY II am HZB. Dort hat Annette Pietzsch mit ihrem Team die Messstation METRIXS aufgebaut, die genau dafür konzipiert ist, flüssige Proben mit RIXS-Experimenten zu untersuchen. „Nach den Wartungsarbeiten im Sommer starten wir mit ersten Tests der Messinstrumente. Und dann kann es weitergehen.“

arö

Das könnte Sie auch interessieren

  • Dynamik in 1D-Spinketten neu aufgeklärt
    Science Highlight
    03.10.2022
    Dynamik in 1D-Spinketten neu aufgeklärt
    Die Neutronenstreuung gilt als die Methode der Wahl, um magnetische Strukturen und Anregungen in Quantenmaterialien zu untersuchen. Nun hat die Auswertung von Messdaten aus den 2000er Jahren mit neuen Methoden erstmals wesentlich tiefere Einblicke in ein Modellsystem - die 1D-Heisenberg-Spinketten - geliefert. Damit steht ein neuer Werkzeugkasten für die Erforschung zukünftiger Quantenmaterialien zur Verfügung.

  • BESSY II: Lokalisierung von d-Elektronen vermessen
    Science Highlight
    02.10.2022
    BESSY II: Lokalisierung von d-Elektronen vermessen
    Übergangsmetalle besitzen vielfältige Anwendungen als Werkstoffe und in der Elektrochemie und Katalyse. Um ihre Eigenschaften zu verstehen, ist das Wechselspiel zwischen atomarer Lokalisierung und Delokalisierung der äußeren Elektronen in den d-Orbitalen entscheidend. Diesen Einblick ermöglicht nun eine besondere Messmethode an BESSY II mit höchster Präzision. Eine Studie an Kupfer, Nickel und Kobalt kommt dabei zu quantitativen Erkenntnissen. Die Royal Society of Chemistry hat den Beitrag als HOT Article 2022 ausgewählt.
  • Rhomboedrischer Graphit als Modell für Quantenmagnetismus
    Science Highlight
    27.09.2022
    Rhomboedrischer Graphit als Modell für Quantenmagnetismus
    Graphen ist ein äußerst spannendes Material. Nun zeigt eine Graphen-Variante ein weiteres Talent: Rhomboedrischer Graphit aus mehreren, leicht gegeneinander versetzten Schichten könnte die verborgene Physik in Quantenmagneten aufklären.