Young investigator research group on electrocatalysis at HZB

Dr. Michelle Browne (here at her graduation ceremony in Dublin) starts now a Young Investigator Group at HZB.

Dr. Michelle Browne (here at her graduation ceremony in Dublin) starts now a Young Investigator Group at HZB. © privat

Dr. Michelle Browne establishes her own young investigator group at the HZB . Starting in August, the group is co-funded by the Helmholtz Association for the next five years. The electrochemist from Ireland concentrates on electrolytically active novel material systems and wants to develop next-generation electrocatalysts, for example hydrogen production. At HZB she will find the perfect environment to conduct her research.

Michelle Browne received her PhD in 2016 from the University of Dublin, Trinity College Dublin (TCD), Ireland. She held research fellow positions at universities in Belfast, Prague, and Dublin. She has received prestigious fellowships and awards, for example the Marie Skłodowska-Curie Individual Fellowship, L’Oreal UNESCO Rising Talent UK & Ireland Fellowship and the Clara Immerwahr Award.

Her research focuses on the synthesis of novel catalytically active materials such as transition metal oxides and MXenes. She aims to characterise and optimise these material systems in order to develop next-generation electrolyzer materials that can also be upscaled for industrial use, in order to produce green hydrogen.

Electrocatalysis: Synthesis to Devices

Michelle Browne's research project fits perfectly with the research projects already underway at the Institute for Solar Fuels and within CatLab. "At HZB, I have a wide variety of investigation methods at my disposal, from scanning electron microscopy to the various instruments at BESSY II, which also allow operando analyses," she says.

Michelle Browne's affiliation with the Technische Universität Berlin in the Institute of Chemistry is planned. Starting in the fall, Browne will recruit postdocs and PhD students to join her team.

 

arö


You might also be interested in

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    03.04.2024
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells.