Alexander Gray kommt als Humboldt-Fellow ans HZB 

Alexander Gray (hier in seinem Labor an der Temple Universität in Philadelphia, USA) will die Zusammenarbeit mit dem Team von Florian Kronast an BESSY II verstärken.

Alexander Gray (hier in seinem Labor an der Temple Universität in Philadelphia, USA) will die Zusammenarbeit mit dem Team von Florian Kronast an BESSY II verstärken. © Privat

Alexander Gray von der Temple University in Philadelphia, USA, arbeitet gemeinsam mit dem HZB-Physiker Florian Kronast an der Erforschung neuartiger 2D-Quantenmaterialien an BESSY II. Mit dem Stipendium der Alexander von Humboldt-Stiftung kann er diese Zusammenarbeit nun vertiefen. Bei BESSY II will er tiefenaufgelöste röntgenmikroskopische und -spektroskopische Methoden weiterentwickeln, um 2D-Quantenmaterialien und Bauelemente für neue Informationstechnologien zu untersuchen. 

Topologische Isolatoren und Weyl-Semimetalle gehören zu den spannendsten Materialklassen für Quantenbauelemente. Sie zeichnen sich dadurch aus, dass sie an den Oberflächen und Grenzflächen andere (elektronische und magnetische) Eigenschaften haben als im Volumen. Alexander Gray ist Experte auf diesem Gebiet und kommt häufig für kurze Messperioden zu BESSY II, wo er mit Florian Kronast zusammenarbeitet.

Als Stipendiat der Alexander von Humboldt-Stiftung kann der amerikanische Physiker nun regelmäßige Gastaufenthalte am HZB im Team von Florian Kronast und am Forschungszentrum Jülich im Team von Claus Schneider finanzieren. "Mit dem Humboldt-Stipendium haben wir mehr Zeit, um zu untersuchen, wie das Zusammenspiel von Oberflächen-, Grenzflächen- und Volumeneigenschaften in Quantenmaterialien zu neuartigen Phänomenen führt, die auch Anwendungen als Bauelemente  ermöglichen", sagt er. 

Gray leitet ein Team an der Temple University in Philadelphia und wird auch seine Studenten zu BESSY II schicken. "Wir wollen neue Techniken entwickeln, um die elektronischen und magnetischen Eigenschaften von 2D-Quantenmaterialien und Quantengeräten zu analysieren", umreißt er seine Ziele. Bei BESSY II wird Gray zu diesem Zweck vor allem die tiefenaufgelöste Stehwellen-Photoemissionsmikroskopie weiterentwickeln. Kronast, Gray und sein ehemaliger Doktorvater Chuck Fadley haben diese Methode bereits mit der Anregung durch stehende Röntgenwellen kombiniert, um eine bessere Tiefenauflösung zu erreichen (SW-PEEM). 

Ab Mitte August plant Alexander Gray den ersten Aufenthalt an BESSY II. Er freut sich nicht nur auf Messungen und Gespräche, sondern auch auf die typische Berliner Atmosphäre: "Die Menschen sind sehr offen und freundlich, und die berühmte "Berliner Schnauze" ist mir noch nie begegnet. Ich denke, wenn ich eines Tages so eine typische raue Antwort erlebe, habe ich sie vielleicht verdient." Mit dieser humorvollen Einstellung wird sein Aufenthalt in Berlin sicher in jeder Hinsicht ein Erfolg.

arö

Das könnte Sie auch interessieren

  • Rhomboedrischer Graphit als Modell für Quantenmagnetismus
    Science Highlight
    27.09.2022
    Rhomboedrischer Graphit als Modell für Quantenmagnetismus
    Graphen ist ein äußerst spannendes Material. Nun zeigt eine Graphen-Variante ein weiteres Talent: Rhomboedrischer Graphit aus mehreren, leicht gegeneinander versetzten Schichten könnte die verborgene Physik in Quantenmagneten aufklären.
  • 40 Jahre Forschen mit Synchrotron-Licht in Berlin
    Nachricht
    14.09.2022
    40 Jahre Forschen mit Synchrotron-Licht in Berlin
    Presseinformation _ Berlin, 14. September 2022: Die Wissenschaft ist seit Jahrzehnten ein wichtiger Treiber für Innovation und Fortschritt in der Hauptstadtregion. Kreative, talentierte Menschen aus der ganzen Welt kommen zusammen und bringen neue Ideen voran, von denen wir als Gesellschaft profitieren. Viele Entdeckungen – von grundlegenden Erkenntnissen bis zum fertigen Produkt – beruhen auf der Forschung mit Synchrotron-Licht. Seit 40 Jahren haben Forscher*innen in Berlin Zugang zu diesem intensiven Licht. Dies beflügelt viele Wissenschaftsdisziplinen und ist ein Standortvorteil für Deutschland.

  • Ein neuer Weg zu spinpolarisierten Strömen
    Science Highlight
    08.09.2022
    Ein neuer Weg zu spinpolarisierten Strömen
    Die Übergangsmetall-Dichalcogenide (TMD) sind eine Materialklasse mit großem Potential für die Spintronik. Eine Studie an BESSY II hat gezeigt, dass in einem dieser Materialien bereits einfach linear polarisiertes Licht ausreicht, um Spins unterschiedlicher Ausrichtung selektiv zu manipulieren. Dieses Ergebnis eröffnet einen neuen Weg zur Erzeugung spinpolarisierter Ströme und ist ein Meilenstein für die Entwicklung spintronischer und opto-spintronischer Geräte.