Dynamics in one-dimensional spin chains newly elucidated

The data from neutron scattering (left) provide information about absorbed energies in reciprocal space. With the new evaluation, it has been possible to obtain statements about new magnetic states and their temporal development in real space (right). The colours blue and red indicate the two opposite spin directions.

The data from neutron scattering (left) provide information about absorbed energies in reciprocal space. With the new evaluation, it has been possible to obtain statements about new magnetic states and their temporal development in real space (right). The colours blue and red indicate the two opposite spin directions. © HZB

Neutron scattering is considered the method of choice for investigating magnetic structures and excitations in quantum materials. Now, for the first time, the evaluation of measurement data from the 2000s with new methods has provided much deeper insights into a model system – the 1D Heisenberg spin chains. A new toolbox is available for elucidating future quantum materials has been achieved.

Potassium copper fluoride KCuF3 is considered the simplest model material realising the so-called Heisenberg quantum spin chain: The spins interact with their neighbours antiferromagnetically along a single direction (one-dimensional), governed by the laws of quantum physics.

"We carried out the measurements on this simple model material at the ISIS spallation neutron source some time ago when I was a postdoc, and we  published our results in 2005, 2013 and again in 2021 comparing to new theories each time they became available," says Prof. Bella Lake, who heads the HZB-Institute Quantum Phenomena in Novel Materials. Now with new and extended methods, a team led by Prof. Alan Tennant and Dr Allen Scheie have succeeded to gain significantly deeper insights into the interactions between the spins and their spatial and temporal evolution.

Dynamics like a wake

"With neutron scattering, you sort of nudge a spin so that it flips. This creates a dynamic, like a wake when a ship is sailing through water, which can affect its neighbours and their neighbours," Tennant explains.

”Neutron scattering data is measured as a function of energy and wavevector” says Scheie “ Our breakthrough was to map the spatial and temporal development of the spins using mathematical methods such as a back-Fourier transformation.” Combined with other theoretical methods, the physicists gathered information about interactions between the spin states and their duration and range, as well as insights into the so-called quantum coherence.

New tool box

The work demonstrates a new tool box for the analysis of neutron scattering data and might foster a deeper understanding of quantum materials that are relevant for technological use.

arö

  • Copy link

You might also be interested in

  • New material for efficient separation of Deuterium at elevated Temperatures
    Science Highlight
    19.03.2025
    New material for efficient separation of Deuterium at elevated Temperatures
    A novel porous material capable of separating deuterium (D2) from hydrogen (H2) at a temperature of 120 K has been introduced. Notably, this temperature exceeds the liquefaction point of natural gas, thus facilitating large-scale industrial applications. This advancement presents an attractive pathway for the economical production of D2 by leveraging the existing infrastructure of liquefied natural gas (LNG) production pipelines. The research conducted by Ulsan National Institute of Science & Technology (UNIST), Korea, Helmholtz-Zentrum Berlin, Heinz Maier Leibnitz Zentrum (MLZ), and Soongsil University, Korea, has been published in Nature Communications.
  • Georg Forster Research Fellow explores photocatalysts
    News
    17.03.2025
    Georg Forster Research Fellow explores photocatalysts
    Dr. Moses Alfred Oladele is working on photocatalysis for CO2 conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist from Redeemer's University in Ede, Nigeria, came to Berlin in the summer of 2024 with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation and will work at HZB for two years.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.