Photocatalysis: Processes in charge separation recorded experimentally

Contour plot of EH-Cu2O. The photovoltages are plotted as a function of photon energy (x-axis) and time (y-axis). Positive SPV signals (purple regions above 1.9 eV) correspond to the relaxation of holes trapped on {111} facets, whereas negative SPV signals (red regions) correspond to the relaxation of electrons trapped on {001} facets.

Contour plot of EH-Cu2O. The photovoltages are plotted as a function of photon energy (x-axis) and time (y-axis). Positive SPV signals (purple regions above 1.9 eV) correspond to the relaxation of holes trapped on {111} facets, whereas negative SPV signals (red regions) correspond to the relaxation of electrons trapped on {001} facets. © HZB

Certain metal oxides are considered good candidates for photocatalysts to produce green hydrogen with sunlight. A Chinese team has now published exciting results on copper(I) oxide particles in Nature, to which a method developed at HZB contributed significantly. Transient surface photovoltage spectroscopy showed that positive charge carriers on surfaces are trapped by defects in the course of microseconds. The results provide clues to increase the efficiency of photocatalysts.

Splitting water into hydrogen and oxygen with the help of photocatalytically active particles could produce green hydrogen cheaply in the future: Sunlight activates charge carriers in photocatalysts, whose spatial separation plays a decisive role in photocatalytic water splitting. However, today's photocatalysts are still either very expensive or not very efficient.

Candidates for catalysts

Metal oxide particles are considered candidates with great potential. However, when charge carriers are activated by light, several processes overlap that take place at different speeds and on different spatial scales. To observe such processes experimentally, methods are needed that offer time resolutions down to femtoseconds, but can also observe longer processes that occur within microseconds and slower. This has now been achieved on microcrystalline copper(I) oxide particles by a team led by Fengtao Fan and Can Li from the Dalian National Laboratory for Clean Energy, China. The results are so interesting that Nature published the work and highlighted it with an News&Views article.

Fast and slow processes

Using rapid successive time-resolved photoemission electron microscopy images, the scientists showed that one of these processes occurs extremely quickly in Cu2O particles - in less than picoseconds (10-12 s): After excitation with light, electrons are transferred quasi-ballistically to {001} facets of Cu2O particles.

However, to experimentally observe a second process, a different method was required: because photogenerated "holes" migrate to {111} facets and are trapped there by defects. Thomas Dittrich was able to observe this important process using transient surface photovoltage spectroscopy (SPV spectroscopy), a method he developed at HZB. "We found that hole trapping occurred relatively slowly, over the course of microseconds," he explains.

High temporal resolution over a wide range

Taken together, the results make it possible for the first time to study and better understand processes that limit photocatalysis on microcrystalline particles with high spatial and temporal resolution over wide ranges.

Versatile method to analyse semiconductors

"With transient SPV spectroscopy, we can also investigate other semiconductors and interfaces that are relevant, for example, for applications ranging from photovoltaics and photocatalysis to high-performance electronics," says Dittrich. Interesting insights into relaxation processes can also be gained from organic semiconductors or ultra-wideband semiconductors such as diamond. "Perhaps our publication in Nature spreads the message how useful this versatile method can be," says Dittrich.

Textbook: "Materials Concepts for Solar Cells", Imperial College Press (2014), 552 pages. ISBN: 978-1783264445

The textbook written by Thomas Dittrich and Steffen Fengler presents among other topics the SPV spectroscopy method.


arö

You might also be interested in

  • NETWORK DAY of the Alliance for Building-Integrated Photovoltaics on 14.02.
    News
    06.02.2023
    NETWORK DAY of the Alliance for Building-Integrated Photovoltaics on 14.02.
    The 2nd BIPV Alliance Network Day will take place on 14.02.2023 from 10 am to 4 pm. The HZB, a member of the BIPV Alliance, is pleased to host the industry-wide exchange. In addition to practical experiences from representatives from architecture, façade construction and applied research, the focus will be on direct exchange and discussion.

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    27.01.2023
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.