BESSY II: Influence of protons on water molecules

The spectral fingerprints of water molecules could be studied at BESSY II. The result: the electronic structure of the three innermost water molecules in an H<sub>7</sub>O<sub>3</sub><sup>+</sup> complex is drastically changed by the proton. In addition, the first hydrate shell of five other water molecules around this inner complex also changes, which the proton perceives via its long-range electric field.

The spectral fingerprints of water molecules could be studied at BESSY II. The result: the electronic structure of the three innermost water molecules in an H7O3+ complex is drastically changed by the proton. In addition, the first hydrate shell of five other water molecules around this inner complex also changes, which the proton perceives via its long-range electric field. © MBI

How hydrogen ions or protons interact with their aqueous environment has great practical relevance, whether in fuel cell technology or in the life sciences. Now, a large international consortium at the X-ray source BESSY II has investigated this question experimentally in detail and discovered new phenomena. For example, the presence of a proton changes the electronic structure of the three innermost water molecules, but also has an effect via a long-range field on a hydrate shell of five other water molecules.

Excess protons in water are complex quantum objects with strong interactions with the dynamic hydrogen bond network of the liquid. These interactions are surprisingly difficult to study. Yet so-called proton hydration plays a central role in energy transport in hydrogen fuel cells and in signal transduction in transmembrane proteins. While the geometries and stoichiometries have been extensively studied both in experiments and in theory, the electronic structure of these specific hydrated proton complexes remains a mystery.

A large collaboration of groups from the Max Born Institute, the University of Hamburg, Stockholm University, Ben Gurion University and Uppsala University has now gained new insights into the electronic structure of hydrated proton complexes in solution.

Using the novel flatjet technology, they performed X-ray spectroscopic measurements at BESSY II and combined them with infrared spectral analysis and calculations. This allowed them to distinguish between two main effects: Local orbital interactions determine the covalent bond between the proton and neighbouring water molecules, while orbital energy shifts measure the strength of the proton's extended electric field.

The results suggest a general hierarchy for proton hydration: the proton interacts with three water molecules and forms an H7O3+ complex. The hydrate shell of this complex is influenced by the electric field of the positive charge of the proton.

The new research findings have direct implications for understanding proton hydration from protons in aqueous solution to proton complexes in fuel cells to water structure hydration pockets of proton channels in transmembrane proteins.

Full text of the MBI-Press release >

MBI/arö


You might also be interested in

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.