Europäische Pilotlinie für innovative Tandem-Solarzellen

Produktionslinie für Solarzellen.

Produktionslinie für Solarzellen. © Qcells

PEPPERONI ist ein vierjähriges Forschungs- und Innovationsprojekt, das im Rahmen von Horizon Europe kofinanziert und gemeinsam vom Helmholtz-Zentrum Berlin und Qcells koordiniert wird. Das Projekt wird dazu beitragen, die Markteinführung und Massenproduktion von Perowskit/Silizium-Tandem-Photovoltaik-Technologien voranzubringen.

Ziel von PEPPERONI ist es, Hindernisse für die Markteinführung der Tandem-Solartechnologie zu ermitteln und zu beseitigen und Grundlagen für neue Produktionskapazitäten in Europa zu schaffen. Eine Pilotlinie wird am europäischen Hauptsitz von Qcells in Thalheim, Deutschland, errichtet. Das Projekt startete am 1. November 2022 mit der langfristigen Vision, Europa eine industrielle Führungsrolle in der PV-Produktion auf dem Weltmarkt zu ermöglichen. 

Im Rahmen von PEPPERONI wird am europäischen Hauptsitz von Qcells in Thalheim, Deutschland, eine Pilotlinie für Tandemzellen vom industriellen Typ eingerichtet, die innovative Anlagen, Prozesse und Materialien zur Herstellung von hocheffizienten Tandemzellen und -modulen umfasst. Der Ansatz von PEPPERONI verspricht einen schnellen und wettbewerbsfähigen Weg zur Massenproduktion von PV-Modulen mit hoher Leistung und langer Lebensdauer.

Fabian Fertig, Director Global R&D Wafer & Cells bei Qcells, sagte: "Qcells ist stolz darauf, Teil des PEPPERONI-Konsortiums mit seinen Weltklasse-Technologiepartnern zu sein. Diese Forschung verspricht, neue Wege bei der Weiterentwicklung der Perowskit-Silizium-Tandem-Solarzellen- und Modultechnologie zu beschreiten. In einer Zeit, in der das derzeitige Energiesystem einem noch nie dagewesenen Druck ausgesetzt ist, ist es spannend, diesen ersten und transformativen Schritt in Richtung einer industriellen Fertigung der nächsten Generation von PV-Technologien in Europa zu verwirklichen."

Bernd Stannowski, Leiter der Abteilung Industriekompatible Prozesse, Solarzellen und -module am HZB, fügte hinzu: "Am HZB haben wir die Tandemtechnologie im Labormaßstab auf Weltrekordniveau entwickelt. Wir freuen uns nun darauf, im PEPPERONI-Konsortium mit Partnern aus Wissenschaft und Industrie zusammenzuarbeiten, um diese neue und vielversprechende Technologie gemeinsam zu skalieren und in die Industrie zu übertragen."

Dies ist nur ein Auszug aus der Pressemitteilung. Bitte lesen Sie die vollständige Pressemitteilung hier >

 

Über das Konsortium

PEPPERONI bündelt europäisches Wissen und Know-how von der Grundlagenforschung über die Erprobung und Entwicklung von Solarzellen im kleinen Maßstab bis hin zur industriellen Fertigung großer Solarmodule im Hochdurchsatzverfahren. Dem PEPPERONI-Konsortium gehören 17 Partner aus 12 Ländern in ganz Europa an. PEPPERONI wird von der EU im Rahmen von Horizon Europe kofinanziert und vom Schweizer Staatssekretariat für Bildung, Forschung und Innovation (SBFI) unterstützt.

Qcells/red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.