European pilot line for innovative photovoltaic technology based on tandem solar cells

Production line for solar cells.

Production line for solar cells. © Qcells

PEPPERONI, a four-year Research and Innovation project co-funded under Horizon Europe and jointly coordinated by Helmholtz-Zentrum Berlin and Qcells, will support Europe in reaching its renewable energy target of climate neutrality by 2050. The project will help advance perovskite/silicon tandem photovoltaics (PV) technology’s journey towards market introduction and mass manufacturing.

PEPPERONI‘s goal is to identify and address the barriers to tandem solar technology’s market introduction, and ultimately lay the foundations for new production capacity in Europe. A pilot line enabling this development will be established at Qcells’ European headquarters in Thalheim, Germany. The project began on 1 November 2022, with the long-term vision of enabling European industrial leadership on PV production in the global market.  

Within PEPPERONI, a pilot line for industrial-type tandem cells will be established at the Qcells European headquarters in Thalheim, Germany, and will feature innovative equipment, processes and materials to produce high-efficiency tandem cells and modules The project aims to scale up the active area of perovskite/Si tandems from the 1cm2 of today’s record devices to industry-relevant dimensions. PEPPERONI’s approach promises a fast and cost-competitive route to mass-production of PV modules of high performance and long durability.

Fabian Fertig, Director Global R&D Wafer & Cells at Qcells, said: “Qcells is proud to be part of the PEPPERONI consortium with its world-class technology partners. This research promises to break new ground in the advancement of perovskite-silicon tandem solar cell and module technology. At a time of unprecedented pressures on the current energy system, it is exciting to realise this first and transformative step towards industrial-scale manufacturing of next-generation PV technology in Europe.”

Bernd Stannowski, head of group Industry compatible processes, solar cells and modules at HZB added: “At HZB we have developed the tandem technology to world-record efficiency level on lab scale. We are now looking forward to cooperate in the PEPPERONI consortium with partners from science and industry to jointly scale this new and very promising technology up and transfer it to industry.”

Note: This is just an excerpt. Please read the full press release at Qcells-Website>

About the consortium

PEPPERONI combines European knowledge and expertise from fundamental research to small-scale testing and development of solar cells all the way to high-throughput industrial manufacturing of large solar modules. The PEPPERONI consortium counts 17 partners from 12 countries spanning across Europe. PEPPERONI is co-funded by the EU under Horizon Europe and supported by the Swiss State Secretariat for Education, Research and Innovation (SERI).

Qcells/red.

You might also be interested in

  • Nanodiamonds can be activated as photocatalysts with sunlight
    Science Highlight
    30.11.2022
    Nanodiamonds can be activated as photocatalysts with sunlight
    Nanodiamond materials have potential as low-cost photocatalysts. But until now, such carbon nanoparticles required high-energy UV light to become active. The DIACAT consortium has therefore produced and analysed variations of nanodiamond materials. The work shows: If the surface of the nanoparticles is occupied by sufficient hydrogen atoms, even the weaker energy of blue sunlight is sufficient for excitation. Future photocatalysts based on nanodiamonds might be able to convert CO2 or N2 into hydrocarbons or ammonia with sunlight.
  • How photoelectrodes change in contact with water
    Science Highlight
    17.11.2022
    How photoelectrodes change in contact with water
    Photoelectrodes based on BiVO4 are considered top candidates for solar hydrogen production. But what exactly happens when they come into contact with water molecules? A study in the Journal of the American Chemical Society has now partially answered this crucial question:  Excess electrons from dopants or defects aid the dissociation of water which in turn stabilizes so-called polarons at the surface. This is shown by data from experiments conducted at the Advanced Light Source at Lawrence Berkeley National Laboratory. These insights might foster a knowledge-based design of better photoanodes for green hydrogen production.
  • BESSY II: Influence of protons on water molecules
    Science Highlight
    10.11.2022
    BESSY II: Influence of protons on water molecules
    How hydrogen ions or protons interact with their aqueous environment has great practical relevance, whether in fuel cell technology or in the life sciences. Now, a large international consortium at the X-ray source BESSY II has investigated this question experimentally in detail and discovered new phenomena. For example, the presence of a proton changes the electronic structure of the three innermost water molecules, but also has an effect via a long-range field on a hydrate shell of five other water molecules.