KI-gestützte Software schafft Durchblick bei komplexen Daten

Experimentelle Daten sind oft nicht nur hochdimensional, sondern auch verrauscht und voller Artefakte. Das erschwert es, die Daten zu interpretieren. Nun hat ein Team am HZB eine Software konzipiert, die mit Hilfe von selbstlernenden neuronalen Netzwerken die Daten smart komprimiert und im nächsten Schritt eine rauscharme Version rekonstruieren kann. Das ermöglicht Einblicke in Zusammenhänge, die sonst nicht erkennbar wären. Die Software wurde jetzt erfolgreich für die Photonendiagnostik beim Freien Elektronenlaser FLASH bei DESY eingesetzt. Sie eignet sich jedoch für ganz unterschiedliche Anwendungen in der Wissenschaft.

Viel ist nicht immer besser, sondern manchmal auch ein Problem. Bei hochkomplexen Daten, die aufgrund ihrer zahlreichen Parameter sehr viele Dimensionen besitzen, sind Zusammenhänge oft nicht mehr erkennbar. Zumal experimentell gewonnene Daten durch Einflüsse, die sich nicht kontrollieren lassen, zusätzlich gestört und verrauscht sind.

Daten für Menschen interpretierbar machen

Nun kann eine neue Software helfen, die auf Methoden der Künstlichen Intelligenz basiert: Es handelt sich um eine besondere Klasse von neuronalen Netzen (NN), die Fachleute mit dem Begriff „disentangled variational autoencoder network (β-VAE)“ bezeichnen. Vereinfacht gesagt sorgt das erste NN für die Komprimierung der Daten, während das zweite NN im Anschluss die Daten wieder rekonstruiert. „Dabei sind die beiden NN so trainiert, dass die komprimierte Form für den Menschen interpretierbar wird“, erklärt Dr. Gregor Hartmann. Der Physiker und Datenwissenschaftler betreut am HZB das Joint Lab zu Methoden der Künstlichen Intelligenz, das vom HZB gemeinsam mit der Universität Kassel betrieben wird.

Die β-VAEs extrahieren ohne Vorkenntnisse das Kernprinzip

Google Deepmind hatte bereits in 2017 vorgeschlagen, β-VAEs zu nutzen. Viele Expertinnen und Experten gingen davon aus, dass die Anwendung in der echten Welt herausfordernd werden wird, da gerade nicht-lineare Komponenten schwer entwirrbar sind. “Nach mehreren Jahren, in denen wir lernen mussten, wie die NN lernen, funktionierte es dann endlich”, sagt Hartmann. β-VAEs sind in der Lage, ein zugrunde liegende Kernprinzip ohne Vorkenntnisse aus Daten zu extrahieren.

Photonenenergie von FLASH bestimmt

In der nun veröffentlichten Studie hat die Gruppe die Software genutzt, um die Photonenenergie von FLASH aus Einzelphotoelektronenspektren zu bestimmen. „Es ist uns gelungen, aus verrauschten Elektronflugzeitdaten diese Informationen zu extrahieren, und zwar deutlich besser als mit herkömmlichen Analysemethoden“, sagt Hartmann. Auch Daten mit detektorspezifischen Artefakten können so bereinigt werden.

Werkzeug für die Forschung

„Die Methode ist richtig gut, wenn es um beeinträchtigte Daten geht“, betont Hartmann. Das Programm ist sogar in der Lage, winzige Signale, die in den Rohdaten nicht erkennbar waren, zu rekonstruieren. Solche Netzwerke können dazu beitragen, unerwartete physikalische Effekte oder Korrelationen in großen experimentellen Datensätzen aufzudecken. „Die KI-basierte intelligente Datenkompression ist ein sehr leistungsstarkes Werkzeug, nicht nur in der Photonenforschung“, sagt Hartmann.

Jetzt "Plug and Play"

Insgesamt haben Hartmann und sein Team drei Jahre lang an der Entwicklung der Software gearbeitet. „Aber nun ist, zumindest der Einstieg in neue Projekte plug and play. Wir hoffen, dass bald viele Kolleginnen und Kollegen mit ihren Daten kommen und wir sie unterstützen können.“

arö


Das könnte Sie auch interessieren

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.
  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.