Elektrokatalyse unter dem Rasterkraftmikroskop

Mit der neuen Methode wurde die Oberfläche eines bimetallischen Katalysatormaterials in einem wässrigen Medium abgerastert. Die Abbildung zeigt eine Überlagerung des Stromsignals auf eine dreidimensionale Darstellung des Höhenbildes. Dabei sind inselartige Bereiche zu erkennen.

Mit der neuen Methode wurde die Oberfläche eines bimetallischen Katalysatormaterials in einem wässrigen Medium abgerastert. Die Abbildung zeigt eine Überlagerung des Stromsignals auf eine dreidimensionale Darstellung des Höhenbildes. Dabei sind inselartige Bereiche zu erkennen. © M. Munz/HZB

Das Prinzip der korrelativen Rasterkraftmikroskopie: Eine feine Spitze am Ende eines Federbalkens tastet die Oberfläche ab. Dadurch lassen sich Kraftwechselwirkungen zwischen Spitze und Probenoberfläche messen, einschließlich der Reibungskräfte. Liegt zusätzlich eine Spannung an, kann auch der durch den Kontakt fliessende elektrische Strom gemessen werden.

Das Prinzip der korrelativen Rasterkraftmikroskopie: Eine feine Spitze am Ende eines Federbalkens tastet die Oberfläche ab. Dadurch lassen sich Kraftwechselwirkungen zwischen Spitze und Probenoberfläche messen, einschließlich der Reibungskräfte. Liegt zusätzlich eine Spannung an, kann auch der durch den Kontakt fliessende elektrische Strom gemessen werden.

Eine Weiterentwicklung der Rasterkraftmikroskopie macht es nun möglich, das Höhenprofil nanometerfeiner Strukturen sowie den elektrischen Strom und die Reibungskraft an fest-flüssig Grenzflächen zeitgleich abzubilden. Damit gelang es einem Team am Helmholtz-Zentrum Berlin (HZB) sowie am Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft, elektrokatalytisch aktive Materialien zu analysieren und Einblicke zu gewinnen, die für die Katalysatoroptimierung hilfreich sind. Die Methode eignet sich darüber hinaus auch, um Prozesse an Batterieelektroden, bei der Photokatalyse oder an aktiven Biomaterialien zu untersuchen.

Um die Energiewende zu meistern, kommt es auch darauf an, günstige und effiziente Materialien zu entwickeln, die für die Aufspaltung von Wasser oder CO2 durch Elektrokatalyse eingesetzt werden können. Dabei wird ein Teil der elektrischen Energie in den chemischen Reaktionsprodukten gespeichert. Wie effizient solche Elektrokatalysatoren ihre Aufgabe erfüllen, hängt stark davon ab, wie Grenzflächen zwischen Elektroden und Elektrolyt beschaffen sind: Es handelt sich dabei um Grenzflächen zwischen den festen Elektroden und dem typischerweise wässrigen Elektrolyten. Doch eine ortsaufgelöste physikalische Untersuchung solcher fest-flüssig-Grenzflächen war bisher kaum verfügbar.

Rasterkraftmikroskopie kann jetzt mehr

Dr. Christopher S. Kley hat nun mit seinem Team einen neuen Ansatz für die korrelative Rasterkraftmikroskopie entwickelt. Hierbei wird eine extrem scharfe Spitze berührend über die Oberfäche gerastert und deren Höhenprofil aufgezeichnet. Mit der am Ende eines miniaturisierten Federbalkens angebrachten Spitze lassen sich die Kraftwechselwirkungen zwischen Spitze und Probenoberfläche mit hoher Empfindlichkeit messen, einschließlich der Reibungskräfte. Außerdem kann der durch den mechanischen Kontakt fließende elektrische Strom gemessen werden, sofern eine Spannung anliegt. „Damit konnten wir in situ (also unter relevanten Flüssigphasen-Bedingungen, statt im Vakuum oder an der Luft) die elektrische Leitfähigkeit, die mechanisch-chemische Reibung und die morphologischen Eigenschaften bestimmen, und zwar zeitgleich“, betont Kley.

Kupfer-Gold-Elektrokatalysator

Mit dieser Methode untersuchte die Gruppe in Zusammenarbeit mit Prof. Beatriz Roldán Cuenya vom Fritz-Haber-Institut (FHI) nun einen nanostrukturierten und bimetallischen Kupfer-Gold-Elektrokatalysator. Solche Materialien werden beispielsweise für die elektrokatalytische Umwandlung von CO2 in Energieträger eingesetzt. „Wir konnten sehr deutlich Inseln aus Kupferoxid identifizieren, die einen höheren elektrischen Widerstand aufweisen, aber auch Korngrenzen und niedrigleitende Bereiche in der Hydratationsschicht, wo die Katalysatoroberfläche mit dem wässrigen Elektrolyten in Berührung kommt“, sagt Dr. Martin Munz, Erstautor der Studie.

Solche Ergebnisse zu Katalysator-Elektrolyt-Grenzflächen helfen, diese gezielt zu optimieren. „Wir können nun beobachten, wie lokale elektrochemische Umgebungen den Ladungstransfer an der Grenzfläche beeinflussen“, sagt Kley.

Fest-flüssig Grenzflächen im Fokus

„Unsere Ergebnisse sind aber auch generell für die Energieforschung von Interesse, insbesondere die Forschung an elektrochemischen Umwandlungsprozessen, die unter anderem in Batteriesystemen eine Rolle spielen“. Einsichten in fest-flüssig-Grenzflächen können aber auch in ganz anderen Forschungsgebieten hilfreich sein, zum Beispiel für das Verständnis von Korrosionsprozessen, Nanosensorik-Systemen, bis hin zu Fragestellungen in der Fluidik und den Umweltwissenschaften, beispielsweise Auflösungs- oder Ablagerungsprozesse an Metalloberflächen.

Hinweis: Die Weiterentwicklung dieser Messmethode erfolgte im Rahmen des CatLab – Projekts, in dem Teams aus HZB und FHI gemeinsam an der Entwicklung von Dünnschicht-Katalysatoren für die Energiewende arbeiten.  

arö


Das könnte Sie auch interessieren

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.
  • Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Science Highlight
    16.04.2024
    Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.
  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.