From waste to value: The right electrolytes can enhance glycerol oxidation

The glycerol&rsquo;s hydroxyl groups are attracted to the Bi<sup>3+</sup> ions on the surface of the BiVO<sub>4</sub> photoanode. The electrolyte plays a decisive role in mediating these interactions.

The glycerol’s hydroxyl groups are attracted to the Bi3+ ions on the surface of the BiVO4 photoanode. The electrolyte plays a decisive role in mediating these interactions. © HZB

When biomass is converted into biodiesel, huge amounts of glycerol are produced as a by-product. So far, however, this by-product has been little utilised, even though it could be processed into more valuable chemicals through oxidation in photoelectrochemical reactors. The reason for this: low efficiency and selectivity. A team led by Dr Marco Favaro from the Institute for Solar Fuels at HZB has now investigated the influence of electrolytes on the efficiency of the glycerol oxidation reaction. The results can help to develop more efficient and environmentally friendly production processes.

 

In 2023, around 16 billion litres of biodiesel and HVO diesel were produced in the European Union*, based on maize, rapeseed, or partially on waste materials from agricultural production. A by-product of biodiesel production is glycerol, which can be used as a building block for the production of valuable chemicals such as dihydroxyacetone, formic acid, glyceraldehyde and glycolaldehyde via a glycerol oxidation reaction (GOR). Glycerol can be oxidised electrochemically in (photo)electrochemical (PEC) reactors, which are currently being developed in particular for the production of green hydrogen. However, this path in PEC-plants is still hardly exploited at present, even though it could significantly increase the economic efficiency of the PEC Power-to-X process, since the oxidation of glycerol requires a much lesser energy input than hydrogen production through water splitting, but at the same time produces more valuable chemicals.

Examining the influence of different electrolytes

Many studies have already investigated the role of photocatalysts in PEC electrolyzers, while the role of the electrolyte had not yet been systematically analysed. A team led by Dr Marco Favaro at the Institute for Solar Fuels has now unveiled the influence of electrolyte composition on the efficiency and stability of the glycerol oxidation.

They used a PEC cell with photoanodes made of nanoporous bismuth vanadate (BiVO4). They tested acidic electrolytes (pH = 2) with various cations and anions, including sodium nitrate (NaNO3), sodium perchlorate (NaClO4), sodium sulphate (Na2SO4), potassium sulphate (K2SO4) and potassium phosphate (KPi). "Our results showed that BiVO4 photoanodes perform best in NaNO3 and outperform the commonly used Na2SO4 in terms of photocurrent, stability, and production rates of high-quality glycerol oxidation reaction products," summarises Favaro.

Sodium nitrate performs best

The team also investigated the reasons for this difference in performance: their hypothesis is that the size of the ions, their different salting in/out capabilities (Hofmeister series), and their different pH buffering capacity play a role. "The composition of the electrolyte has a surprising clear effect on the glycerol oxidation efficiency, and we were able to observe this trend in both bismuth vanadate and polycrystalline platinum anodes," says PhD student Heejung Kong. This supports the assumption that these findings could generally apply to different materials and processes.

The choice of electrolyte is therefore of great importance for the efficiency and stability of glycerol oxidation. "Our research could help to convert biomass by-products into valuable chemicals more efficiently and to produce valuable chemicals from waste materials while minimising the impact on the environment," says Favaro.

Note: This work was supported by the European Innovation Council (EIC) via OHPERA project (grant agreement 101071010).

*Source:  https://de.statista.com/statistik/daten/studie/1179499/umfrage/produktion-von-biodiesel-und-erneuerbarem-diesel-eu/= 

arö

  • Copy link

You might also be interested in

  • Leading Sasol scientist appointed as Industrial Research Fellow at HZB
    News
    11.02.2025
    Leading Sasol scientist appointed as Industrial Research Fellow at HZB
    Within the CARE-O-SENE project, HZB is cooperating with the South African company Sasol on innovative catalysts for sustainable aviation fuels (SAF). Now, the collaboration is intensifying: Dr. Denzil Moodley, a leading scientist in the field of Fischer-Tropsch at Sasol Research and Technology, is being appointed as Industrial Research Fellow at HZB. Moodley will contribute his expertise at HZB with the aim of accelerating the innovation cycle for sustainable fuel technologies.
  • HZB Sets New World Record for CIGS Perovskite Tandem Solar Cells
    News
    04.02.2025
    HZB Sets New World Record for CIGS Perovskite Tandem Solar Cells
    Combining two semiconductor thin films into a tandem solar cell can achieve high efficiencies with a minimal environmental footprint. Teams from HZB and Humboldt University Berlin have now presented a CIGS-perovskite tandem cell that sets a new world record with an efficiency of 24.6%, certified by the independent Fraunhofer Institute for Solar Energy Systems.

  • “Germany mustn’t lose sight of its ambitious goals”
    Interview
    29.01.2025
    “Germany mustn’t lose sight of its ambitious goals”
    The Science Year 2025 is dedicated to the topic of ‘Future Energy’ and the Helmholtz Association is conducting cutting-edge research in this field.  An interview with Bernd Rech, Vice-President Energy of the Helmholtz Association and Scientific Director at HZB, on topics such as: Where does Germany stand with the restructuring of its energy system? What contribution can research make? And what about hydrogen, nuclear energy and nuclear fusion, and the new challenges for a secure supply in times of cyber attacks?