Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype

Das Schema zeigt Energieaufwand und Kosten für die Wasserstoffproduktion aus Meerwasser mit heute funktionierenden Technologien.

Das Schema zeigt Energieaufwand und Kosten für die Wasserstoffproduktion aus Meerwasser mit heute funktionierenden Technologien. © 10.1016/j.joule.2024.07.005

Technisch-Ökonomische Analysen zeigen auf, welchen Mehrwert Forschung und Entwicklung bieten, damit Forschungsgelder in aussichtsreiche und wichtige Projekte investiert werden können.

Technisch-Ökonomische Analysen zeigen auf, welchen Mehrwert Forschung und Entwicklung bieten, damit Forschungsgelder in aussichtsreiche und wichtige Projekte investiert werden können. © 10.1016/j.joule.2024.07.005

Der Plan klingt bestechend: Neuartige Elektrolyseure sollen aus ungereinigtem Meerwasser mit Strom aus Sonne oder Wind direkt Wasserstoff erzeugen. Doch bei näherer Betrachtung zeigt sich, dass solche DSE-Elektrolyseure (DSE = Direct Seawater Electrolyzers) noch Jahre anspruchsvoller Forschung erfordern. Dabei sind neuartige Elektrolyseure gar nicht nötig, um Meerwasser für die Produktion von Wasserstoff zu verwenden – eine Entsalzung reicht aus, um Meerwasser für konventionelle Elektrolyseure aufzubereiten. In einem Kommentar im Fachjournal Joule vergleichen internationale Expert*innen Kosten und Nutzen der unterschiedlichen Ansätze und kommen zu einer klaren Empfehlung.

 

Süßwasser ist eine begrenzte Ressource, mehr als 96 % des Wassers auf der Erde stammt aus den Ozeanen. Wenn sich das reichlich verfügbare Meerwasser direkt in einen neu zu entwickelnden Elektrolyseur einspeisen ließe, um mit Strom aus Sonne und Wind Wasserstoff zu produzieren, klingt das sehr überzeugend. Insgesamt fließen hunderte Millionen an Forschungsgeldern in diese Idee und allein in 2023 sind über 500 Publikationen (diese Zahl steigt exponentiell) zu diesem Thema erschienen.

Neuentwicklung unnötig

Doch die angeführte Argumentation fällt in sich zusammen, sobald man Aufwand und Nutzen näher betrachtet, zeigt eine technisch-ökonomische Analyse. „Es gibt keinen überzeugenden Grund, um diese Technologie neu zu entwickeln, weil es bereits effiziente Lösungen gibt, mit denen sich Meerwasser für die Produktion von Wasserstoff nutzen lässt“, sagt Dr. Jan Niklas Hausmann, Elektrolyse-Forscher am HZB und Erstautor des Joule-Kommentars. An dem Kommentar haben internationale Expert*innen unterschiedlicher Fachrichtungen aus renommierten Forschungseinrichtungen wie der Yale-University, Universitäten in Kanada, Deutschland sowie dem HZB mitgearbeitet.

Bewährte Verfahren funktionieren

So ist es schon heute möglich, Meerwasser für die Produktion von Wasserstoff zu nutzen. Denn mit bewährten Verfahren wie der Umkehrosmose lässt sich Meerwasser für „normale“, kommerziell erhältliche Elektrolyseure aufbereiten. Meerwasser zu reinigen benötigt aus thermodynamischer Sicht nur 0,03% der Energie, die für dessen Elektrolyse aufgewendet werden muss. Das zeigt sich auch in den aktuellen Kosten: Die Reinigung des Meerwassers für die Herstellung eines Kilogrammes Wasserstoff kostet weniger als zwei Cent. Ein Kilogramm Wasserstoff kostet jedoch 13,85 Euro an deutschen Tankstellen. 

Auf das richtige Pferd setzen

Die Entwicklung von neuartigen Elektrolyseuren, die in Meerwasser stabil arbeiten können, würde nur diese kostengünstige Aufbereitung einsparen. Im Gegensatz dazu ist die Entwicklung von neuartigen DSE-Elektrolyseuren überaus anspruchsvoll und es ist höchst fragwürdig, ob sie jemals die Effizienz und Langzeitstabilität von heutigen Elektrolyseuren erreichen können. Fachleute sehen hier große Herausforderungen: Meerwasser enthält die unterschiedlichsten organischen und anorganischen Substanzen, die Korrosion und Fäulnisprozesse auslösen und alle Teile des Elektrolyseurs in Mitleidenschaft ziehen können. Das wirft viele schwierige Fragen auf, deren Beantwortung im Moment gern als Lösung für die Wasserstoffproduktion beworben wird. Ein Versprechen, das nicht haltbar ist, und viele Steuergelder verschlingen könnte, warnen die Forschenden.

„Wir können das mit der direkten Nutzung von Rohöl vergleichen“, erklärt Jan Niklas Hausmann: „Es ist vermutlich möglich, Autos zu entwickeln, die mit Rohöl betankt werden können, sie werden aber nie die Zuverlässigkeit und Effizienz Benzinern haben. Somit wurde sie nie kommerzialisiert. Und das, obwohl die Kosten für die Reinigung von Rohöl (Raffinerie) bis zu 16 % des Endpreises des Kraftstoffs betragen, also dramatisch höher sind als die relativen Kosten für die Aufbereitung von Meerwasser in der Elektrolyse (<1%).“

Elektrolyseforschung soll Beitrag zur Dekarbonisierung leisten

Akademische Forschung muss nicht unbedingt zu unmittelbaren Lösungen in der Praxis führen. Wenn jedoch DSE als Sofortlösung präsentiert und besonders gepusht wird, bindet es Ressourcen und Kapazitäten, die für die Entwicklung von Schlüsseltechnologien zur Dekarbonisierung anderswo fehlen werden“, erklärt Dr. Prashanth Menezes, Experte für Katalyseforschung am HZB.

„Wenn wir bis 2050 einen Netto-Kohlenstoffausstoß von Null erreichen wollen, müssen die Finanzierungsmittel auf Entwicklungen ausgerichtet werden, die rasch dazu beitragen können, auch im Bereich der Elektrolyseforschung“, sagt Menezes.

Kernpunkte der technisch-ökonomischen Analyse:

  • Kommerziell bereits erhältliche Wasseraufbereitung wie Umkehrosmose bereitet Meerwasser so auf, dass es für „normale“ Elektrolyseure geeignet ist. Die relativen Kosten dafür sind sehr gering.
  • Direkte Meerwasserelektrolyse bringt für die zu entwickelnden Elektrolyseure große Herausforderungen:
    • Biofaulprozesse
    • Korrosion
    • kurze Lebensdauer und geringere Flexibilität der Elektrolyseure

Fazit: Die enormen Gelder, die für die Entwicklung nötig sind, sind besser investiert, wenn man stattdessen Elektrolyseure weiterentwickelt, die mit hochreinem Wasser arbeiten. Denn der Wasserreinigungsprozess verursacht kaum Kosten.

Hinweis: Am Kommentar haben Experten aus unterschiedlichen Disziplinen mitgeschrieben: Prof. Elimelech und Prof. Winter sind Experten für Wasserreinigungstechnologien und Autoren eines kürzlich erschienenen Berichts über die Nutzung verschiedener unreiner Wasserquellen für die Wasserstoffproduktion, Prof. Khan und Prof. Kibria sind Experten für erneuerbare Energiespeichertechnologien und deren techno-ökonomische Analysen und Autoren eines kürzlich erschienenen Berichts über die techno-ökonomischen Aspekte von DSE. Dr. Sontheimer ist Experte für Energietechnologien und die Interaktion zwischen den Akteuren in Wissenschaft, Industrie und Politik; Dr. Hausmann und Dr. Menezes sind Experten für Materialwissenschaften, Katalyse und Wasserspaltung und haben kürzlich eine techno-ökonomische Analyse zu DSE veröffentlicht.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Magnetische „Mikroblüten“ verstärken lokale Magnetfelder
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken lokale Magnetfelder
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Die Zukunft der Energie: Empfehlungen der Wissenschaft an die Politik
    Nachricht
    21.03.2025
    Die Zukunft der Energie: Empfehlungen der Wissenschaft an die Politik
    Expert*innen des HZB haben ihr Fachwissen in den hier kurz vorgestellten Positionspapieren eingebracht.
    Zu den Themen gehören die Entwicklung innovativer Materialien für eine nachhaltige Energieversorgung und die Kreislaufwirtschaft.
    Fachleute aus verschiedenen Bereichen haben gemeinsam Lösungen und Handlungsempfehlungen formuliert.

  • Neues Material für die effiziente Trennung von Deuterium bei erhöhter Temperatur
    Science Highlight
    19.03.2025
    Neues Material für die effiziente Trennung von Deuterium bei erhöhter Temperatur
    Ein neuartiges poröses Material kann Deuterium bei einer Temperatur von 120 K von Wasserstoff trennen. Dabei übersteigt diese Temperatur den Verflüssigungspunkt von Erdgas deutlich, was großtechnische Anwendungen erleichtert, zum Beispiel für die wirtschaftliche Produktion von Deuterium über die Infrastruktur von Pipelines für Flüssigerdgas (LNG). An der Forschungsarbeit sind Teams aus dem Ulsan National Institute of Science & Technology (UNIST), Korea, dem Helmholtz-Zentrum Berlin, dem Heinz Maier Leibnitz Zentrum (MLZ) und der Soongsil University, Korea, beteiligt.