Green hydrogen: ‘Artificial leaf’ becomes better under pressure

The efficiency of a PEC cell depends on many factors, including the size of the gas bubbles.</p>
<p>

The efficiency of a PEC cell depends on many factors, including the size of the gas bubbles.

© Feng Liang /HZB

The combined energy losses have been evaluated up to 20 bar of the PEC-generated hydrogen. Efficiency losses are lowest at a pressure of 6-8 bar, especially optical and thermodynamic losses. The team achieved this result by combining experimental data with a physical model.

The combined energy losses have been evaluated up to 20 bar of the PEC-generated hydrogen. Efficiency losses are lowest at a pressure of 6-8 bar, especially optical and thermodynamic losses. The team achieved this result by combining experimental data with a physical model. © HZB/Nature Communications 2024

Hydrogen can be produced via the electrolytic splitting of water. One option here is the use of photoelectrodes that convert sunlight into voltage for electrolysis in so called photoelectrochemical cells (PEC cells). A research team at HZB has now shown that the efficiency of PEC cells can be significantly increased under pressure.

 

Some call it an ‘artificial leaf’: instead of the natural Photosystem II complex that green leaves in nature use to split water with sunlight, photoelectrochemical cells, or PEC cells for short, use artificial, inorganic photoelectrodes to generate the voltage required for the electrolytic splitting of water from sunlight.

Minimising losses

The best performing devices already achieve impressive energy conversion efficiencies of up to 19 per cent. At such high efficiencies, losses due to bubble formation start to play an important role. This is because bubbles scatter light, preventing optimal illumination of the electrode. Moreover, bubbles may block the electrolyte from contacting the electrode surface and thus cause electrochemical deactivation. To minimize these losses, it would help to reduce the bubble sizes by operating the device at higher pressure. However, all PEC devices reported thus far have been operating at atmospheric pressure (1 bar).

Enhancing the pressure

A team from the Institute for Solar Fuels at HZB has now investigated water splitting at elevated pressure under PEC-relevant conditions. They used gas to pressurise PEC flow cells to between 1 and 10 bar and recorded a number of different parameters during electrolysis. They also developed a multiphysics model of the PEC process and compared it with experimental data at normal and elevated pressure.

This model now allows to play with the parameters and identify the key levers. “For example, we investigated how the operating pressure affects the size of the gas bubbles and their behaviour at the electrodes," says Dr Feng Liang, first author of the paper now published in Nature Communications.

Energy losses halved

The analysis shows that increasing the operating pressure to 8 bar halves the total energy loss, which could lead to a relative increase of 5-10 percent in the overall efficiency. “The optical scattering losses can be almost completely avoided at this pressure," explains Liang. “We also saw a significant reduction in product cross-over, especially the transfer of oxygen to the counter electrode”.

At higher pressures, however, there is no advantage, so the team suggests 6-8 bar as the optimum operating pressure range for PEC electrolysers. “These findings, and in particular the multiphysics model, can be extended to other systems and will help us to increase the efficiencies of both electrochemical and photocatalytic devices," says Prof. Dr. Roel van de Krol, who heads the Institute for Solar Fuels at HZB.

Note: The work was funded by the Helmholtz Innopool project 'Solar H2: Highly Pure and Compressed'. The science team wants to express its heartfelt gratitude to Christian Höhn, Markus Bürger, Lars Drescher, Torsten Wagner for their unwavering contributions to the construction of this high-pressure flow cell.

arö

  • Copy link

You might also be interested in

  • More time for discussions
    Interview
    12.05.2025
    More time for discussions
    The South African chemist Denzil Moodley is the first Industrial Research Fellow at HZB. He is playing a leading role in the CARE-O-SENE project. The Fellowship program aims to further accelerate the development of an efficient catalyst for a sustainable aviation fuel. An interview about the CARE-O-SENE project and why it is so important for scientists from industry and public research to work together.
  • Perovskites: Hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Perovskites: Hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.