Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen

Der Vergleich zwischen den experimentell gewonnenen Daten an der Neutronenquelle ISIS (links) und den Ergebnissen der theoretischen Betrachtung mit der PFFRG-Methode (rechts) zeigt eine hervorragende Übereinstimmung. 

Der Vergleich zwischen den experimentell gewonnenen Daten an der Neutronenquelle ISIS (links) und den Ergebnissen der theoretischen Betrachtung mit der PFFRG-Methode (rechts) zeigt eine hervorragende Übereinstimmung.  © HZB

Die Nickel-Ionen bilden untereinander zwei so genannte Trillium-Gitter, die miteinander verschränkt sind.

Die Nickel-Ionen bilden untereinander zwei so genannte Trillium-Gitter, die miteinander verschränkt sind. © M. Gonzalez / HZB

In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.

Wenn sich Spins in einem Kristallgitter nicht so ausrichten können, dass sie gemeinsam ein Minimum der Energie erreichen, spricht man von magnetischer Frustration. Wird diese Frustration groß genug, dann fluktuieren die Spins ungeordnet weiter, selbst wenn die Temperatur gegen Null geht. Man spricht dann von Quanten-Spin-Flüssigkeiten.

Quanten-Spin-Flüssigkeiten in 3D sind selten

Quanten-Spin-Flüssigkeiten (QSL) besitzen bemerkenswerte Eigenschaften, unter anderem weisen sie topologisch geschützte Phänomene auf, die zum Beispiel für zukünftige, besonders stabile Qbits nützlich wären. Zunächst wurden Quanten-Spin-Flüssigkeiten vor allem in zweidimensionalen Strukturen untersucht, doch in 3D-Strukturen kann das Phänomen ebenfalls auftreten, wenn auch deutlich seltener.

Langbeinit mit Nickel

Nun hat eine internationale Kooperation dieses Verhalten in einer neuen Materialklasse mit einer 3D-Struktur nachgewiesen: Die Langbeinite sind in der Natur selten vorkommende Sulfat-Mineralien; indem man ein oder zwei Elemente aus der Summenformel ersetzt, entstehen Variationen, die alle zu dieser Materialklasse zählen.

Hier entsteht Frustration

Für die Untersuchung wurden künstlich erzeugte Langbeinit-Kristalle mit der Summenformel K2Ni2(SO4)3 hergestellt. Dabei spielt das magnetische Element Nickel die entscheidende Rolle: Die Nickel-Ionen bilden untereinander zwei so genannte Trillium-Gitter, die miteinander verschränkt sind. Dies erzeugt die gewünschte magnetische Frustration, die noch verstärkt wird, wenn ein äußeres Magnetfeld anliegt: Die magnetischen Momente der Nickel-Ionen können sich nicht alle energetisch günstig ausrichten, sondern fluktuieren und bilden eine Quanten-Spin-Flüssigkeit.

Neutronen-Messungen und Theorie: alles passt

Das Team um Ivica Živkovič von der EPFL konnte die magnetischen Fluktuationen an der britischen Neutronenquelle ISIS in Oxford vermessen. Die Proben verhalten sich wie ein Quanten-Spin-Flüssigkeit, und noch nicht einmal nur bei extrem tiefen Temperaturen, sondern auch noch bei „lauwarmen“ 2 Kelvin.

Das Team um den HZB-Theoretiker Johannes Reuther konnte die Messdaten erfolgreich erklären, indem gleich mehrere theoretische Methoden zum Einsatz kamen. „Unser theoretisches Phasendiagramm identifiziert sogar eine "Insel der Liquidität“, die um ein stark frustriertes Tetratrillium-Gitter zentriert ist“, sagt Matias Gonzalez, Erstautor der Studie, und Postdoc im Team Reuther, der die Monte Carlo Simulationen durchgeführt hat. Doktorand Vincent Noculak berechnete die Wechselwirkungen zwischen den Spins mit einer auf  Feynman-Diagrammen basierenden Methode, die Reuther bereits vor einigen Jahren selbst entwickelt hatte (Pseudo-Fermionen funktionale Renormierungsgruppe PFFRG). Die Übereinstimmung zwischen Messdaten und theoretischen Ergebnisse ist überraschend hoch. „Wir können dieses System trotz seiner äußerst komplizierten Wechselwirkungen wirklich sehr gut durch unsere Modellierungen abbilden“, sagt Reuther.

Langbeinite mit Potential

Die Langbeinite sind eine sehr große und in weiten Teilen noch unerforschte Materialklasse. Die Studie zeigt, dass sich die Suche nach Quantenverhalten hier lohnen kann. So hat das Team um die HZB-Physikerin Bella Lake schon neue Vertreter dieser Materialklasse synthetisiert, die ebenfalls als 3D Quantenspinflüssigkeiten in Frage kommen. „Noch ist dies reine Grundlagenforschung“, betont Johannes Reuther, „aber mit dem steigenden Interesse an neuartigen Quantenmaterialien könnten die Langbeinite auch für Anwendungen in der Quanteninformation interessant werden“.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Nachricht
    04.09.2024
    SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Bevor Lebensmittel verderben bilden sich meist bestimmte reaktionsfreudige Moleküle, sogenannte freie Radikale. Bisher war der Nachweis dieser Moleküle für Lebensmittelunternehmen sehr kostspielig. Ein Team aus HZB und Universität Stuttgart hat nun einen tragbaren und kostengünstigen „EPR-on-a-Chip“-Sensor entwickelt, der freie Radikale auch in geringsten Konzentrationen nachweisen kann. Nun bereitet das Team die Gründung eines Spin-off-Unternehmens vor, gefördert durch das EXIST-Forschungstransferprogramm des Bundesministeriums für Wirtschaft und Klimaschutz. Der EPRoC-Sensor soll zunächst bei der Herstellung von Olivenöl und Bier eingesetzt werden, um die Qualität dieser Produkte zu sichern.
  • Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Science Highlight
    03.09.2024
    Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Ein Team aus führenden Expertinnen und Experten aus Medizinphysik, Physik und Strahlentherapie, zu dem auch die HZB-Physikerin Prof. Andrea Denker und der Charité-Medizinphysiker Dr. Jens Heufelder gehören, hat einen Übersichtsartikel zur Protonentherapie von Augentumoren veröffentlicht. Der Beitrag ist im Red Journal, einem der renommiertesten Fachjournale in diesem Bereich erschienen. Er stellt die Besonderheiten dieser Therapieform am Auge vor, erläutert den Stand der Technik und aktuelle Forschungsschwerpunkte, gibt Empfehlungen zur Durchführung der Bestrahlungen und einen Ausblick auf künftige Entwicklungen.