Green hydrogen: MXenes shows talent as catalyst for oxygen evolution

The surface of a Vanadium carbide MXene has been examined by Scanning Electron Microscopy. The beautiful structures are built by cobalt copper hydroxide molecules.

The surface of a Vanadium carbide MXene has been examined by Scanning Electron Microscopy. The beautiful structures are built by cobalt copper hydroxide molecules. © B. Schmiedecke/HZB

The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.

Green hydrogen is seen as one of the energy storage solutions of the future. The gas can be produced in a climate-neutral way using electricity from the sun or wind by electrolytic water splitting. While hydrogen molecules are produced at one electrode, oxygen molecules are formed at the other. This oxygen evolution reaction (OER) is one of the limiting factors in electrolysis. Special catalysts are needed to facilitate this reaction. Among the best candidates for OER catalysts are, for example, nickel oxides, which are inexpensive and widely available. However, they corrode quickly in the alkaline water of an electrolyser and their conductivity also leaves much to be desired. This is currently preventing the development of low-cost, high-performance electrolysers.

MXene as catalysts

A new class of materials could offer an alternative: MXenes, layered materials made of metals, such as titanium or vanadium, combined with carbon and/or nitrogen. These MXenes have a huge internal surface area that can be put to fantastic use, whether for storing charges or as catalysts.

An international team led by Dr Michelle Browne has now investigated the use of MXenes as catalysts for the oxygen evolution reaction. PhD student Bastian Schmiedecke chemically 'functionalised' the MXenes by docking copper and cobalt hydroxides onto their surfaces. In preliminary tests, the catalysts produced in this way proved to be significantly more efficient than the pure metal oxide compounds. What's more, the catalysts showed no degradation and even improved efficiency in continuous operation.

Measurements at BESSY II

Measurements at the BESSY II X-ray source, with Namrata Sharma and Tristan Petit, showed why this works so well: “We were able to use the Maxymus beamline there to find out how the outer surfaces of the MXene samples differ from the inside,” explains Schmiedecke. The researchers combined scanning electron microscopy (SEM/TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray transmission microscopy (STXM) and X-ray absorption near-edge structure (XANES) to gain further insights into the material.

Outlook: observation under continuous load

"We have been able to show that MXenes have great potential for use as catalysts in electrolysers," says Michelle Browne. The collaboration with partner teams from Trinity College, Dublin, Ireland, and the University of Chemistry and Technology, Prague will continue. In addition to further chemical variations of MXene catalysts, the team also plans to test such catalysts in conventional electrolysers in continuous operation.

arö

  • Copy link

You might also be interested in

  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.
  • Rutger Schlatmann re-elected as ETIP PV Chair
    News
    24.10.2024
    Rutger Schlatmann re-elected as ETIP PV Chair
    The European Technology and Innovation Platform for Photovoltaics (ETIP PV) was created by the European Commission in order to promote photovoltaic technologies and industries in Europe. Now, the ETIP PV Steering Committee elected a new Chair, as well as two Vice-Chairs for the term 2024 – 2026. Rutger Schlatmann, head of the division Solar Energy at the HZB, and professor at HTW Berlin, was re-elected as the ETIP PV Chair.
  • Perovskite solar cells: TEAM PV develops reproducibility and comparability
    News
    22.10.2024
    Perovskite solar cells: TEAM PV develops reproducibility and comparability
    Ten teams at Helmholtz-Zentrum Berlin are building a long-term international alliance to converge practices and develop reproducibility and comparability in perovskite materials. The TEAM PV project is funded by the Federal Ministry of Education and Research (BMBF), Germany.