Perovskite solar cells: TEAM PV develops reproducibility and comparability

Perovskite materials for photovoltaic applications come in many shades, reflecting their huge variety of optical properties. This makes them uniquely fit to be combined with other materials in multijunction solar cells.

Perovskite materials for photovoltaic applications come in many shades, reflecting their huge variety of optical properties. This makes them uniquely fit to be combined with other materials in multijunction solar cells. © M. Setzpfandt/HZB

At HZB several labs are dedicated to perovskite research. Here different compositions of the material can be prepared.

At HZB several labs are dedicated to perovskite research. Here different compositions of the material can be prepared. © M. Setzpfandt/HZB

The HZB runs a testing facility in order to observe different perovskite solar cells in real life conditions.

The HZB runs a testing facility in order to observe different perovskite solar cells in real life conditions. © HZB

Ten teams at Helmholtz-Zentrum Berlin are building a long-term international alliance to converge practices and develop reproducibility and comparability in perovskite materials. The TEAM PV project is funded by the Federal Ministry of Education and Research (BMBF), Germany.

Solar energy is already the cheapest way to generate electricity in many parts of the world. But the world needs much higher efficiency solar modules to power demanding sectors such as electric vehicles, steel production, and AI. Likely the only option for increasing efficiency within the next decade is halide perovskites, a new class of materials that has been the subject of intensive research in the last decade. And while the silicon modules that dominate the market today are mainly produced in China, production facilities for halide perovskite cells could also be set up in Europe and the US, de-risking supply chains.

However, the road from the laboratory to mass production is long and there are still a number of hurdles to overcome. "The central goal is to increase the manufacturability, stability, and reliability of perovskite-based technologies. We urgently need common protocols to reliably compare diverse global developments in these novel materials and also to predict their service life," says Dr Siddhartha Garud, who drives the management of the TEAM PV project at HZB. Within this project, HZB aims to converge best practices in fabrication and analyses together with the National Renewable Energy Lab NREL, the University of Colorado Boulder and Humboldt-Universität zu Berlin.

One of the main questions is how the stability determined in a laboratory will behave under real conditions in a field. Another focus will be on machine learning methods to navigate this extremely vast class of materials and devices. The participating teams will work closely together to further develop the fabrication and analysis of perovskite thin films and full devices.

The BMBF is providing a total of €4 million in funding for the TEAM PV project for tools, personnel and researcher exchanges. "We want to establish a long-term partnership in photovoltaics with sustained researcher exchanges and also make it a starting point for further collaborations between the Helmholtz Association and National Labs and top Universities in the U.S.", Garud says.

 

 

arö

  • Copy link

You might also be interested in

  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Catalyst Activation and Degradation in Hydrous Iridium Oxides
    Science Highlight
    10.12.2024
    Catalyst Activation and Degradation in Hydrous Iridium Oxides
    The development of efficient catalysts for the Oxygen Evolution Reaction (OER) is crucial for advancing Proton Exchange Membrane (PEM) water electrolysis, with iridium-based OER catalysts showing promise despite the challenges related to their dissolution. Collaborative research by the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH and the Fritz-Haber-Institut has provided insights into the mechanisms of OER performance and iridium dissolution for amorphous hydrous iridium oxides, advancing the understanding of this critical process.