Protons against cancer: New research beamline for innovative radiotherapies

Prof. Dr Judith Reindl and PhD student Aikaterini Rousseti (from left to right) from the University of the Bundeswehr Munich present the experimental station for biological samples which is installed at the new Minibee beamline at HZB.

Prof. Dr Judith Reindl and PhD student Aikaterini Rousseti (from left to right) from the University of the Bundeswehr Munich present the experimental station for biological samples which is installed at the new Minibee beamline at HZB. © Kevin Fuchs / HZB

Magnetic quadrupoles focus the proton beam in front of the experiment platform.

Magnetic quadrupoles focus the proton beam in front of the experiment platform. © Kevin Fuchs / HZB

Together with the University of the Bundeswehr Munich, the HZB has set up a new beamline for preclinical research. It will enable experiments on biological samples on innovative radiation therapies with protons.

 

The proton accelerator at the Helmholtz-Zentrum Berlin (HZB) has been used for about 25 years to combat certain types of eye tumours. So far, over 4800 people have benefited from proton eye tumour therapy, which is carried out in collaboration with Charité – Universitätsmedizin Berlin.

Now, the proton accelerator at HZB also offers the option of conducting preclinical research: A mini-beamline for preclinical experiments (Minibee) has been set up for this purpose together with the University of the Bundeswehr in Munich. The HZB's Proton Therapy Department has built the beam guidance and control system for the minibeams. The University of the Bundeswehr in Munich, with Prof. Judith Reindl from the Institute of Applied Physics and Measurement Technology and the Section of Biomedical Radiation Physics, installed a platform for image-guided irradiation of biological samples. This will enable joint experiments on radiobiology and innovative radiation therapy in the future.

‘At Minibee, we can use medical research to investigate how changes in parameters and settings of the proton beam affect the treatment,’ says Judith Reindl. Among other things, Minibee is designed to generate ultrashort proton flashes (FLASH therapy) or needle-fine radiation (beamlets). ‘Our aim is to develop new methods that effectively destroy tumours while providing even better protection for healthy tissue,’ says Prof. Dr. Andrea Denker, head of the Department of Proton Therapy at HZB.

arö

  • Copy link

You might also be interested in

  • Industrial Research Fellow at HZB: More time for discussions
    Interview
    12.05.2025
    Industrial Research Fellow at HZB: More time for discussions
    The South African chemist Denzil Moodley is the first Industrial Research Fellow at HZB. He is playing a leading role in the CARE-O-SENE project. The Fellowship program aims to further accelerate the development of an efficient catalyst for a sustainable aviation fuel. An interview about the CARE-O-SENE project and why it is so important for scientists from industry and public research to work together.
  • Perovskites: Hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Perovskites: Hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.