Innovative Catalyst Platform Advances Understanding of Working Catalysts

© FHI

A novel catalyst platform, known as Laterally Condensed Catalysts (LCC), has been developed to enable design and analysis of the functional interface connecting the active mass to its support. This interface not only influences the chemical properties of the reactive interface but also controls its stability and hence the sustainability of the catalytic materials. The development was significantly supported by the use of operando spectroscopy at the BESSY II synchrotron, which made it possible to observe and understand the dynamic processes and structures under reaction conditions.

Unrestrained combinations in composition between active phase and support enable for example direct energy transfer to the reactive interface in electrocatalysis or electrical heating. The physical synthesis methodology within the FHI-HZB CatLab project, taken from solar cell technology, gives access to precise and homogeneous structures and chemistry. This facilitates the mechanistic understanding of working catalysts and their subsequent optimization through interrogating reactive and functional interfaces by operando spectroscopy. The thin film catalysts studied here were synthesized with the objective of designing the interface structure of performance catalysts and closing the material gap between model and real-world powder catalysts while minimizing the use of noble metals. Its unique flat and densely packed structure (LCC) enables to achieve a homogeneous high density of surface active sites, minimizing the content of material present in the “bulk” or subsurface of the active catalysts with benefical effects on the selelctivity of the catalyzed reaction.

This effort is detailed in a study published in Nature Communications, entitled "Rationally Designed Laterally-Condensed-Catalysts Deliver Robust Activity and Selectivity for Ethylene Production in Acetylene Hydrogenation." The study is part of the CatLab Project, a collaboration prominently involving the Fritz Haber Institute of the Max Planck Society (FHI), the Helmholtz-Zentrum Berlin für Materialien und Energie and the Max Planck Institute for Chemical Energy Conversion. The CatLab Project is funded by Federal Ministry of Education and Research (BMBF).

Read more here (FHI) >

FHI

  • Copy link

You might also be interested in

  • Georg Forster Research Fellow explores photocatalysts
    News
    17.03.2025
    Georg Forster Research Fellow explores photocatalysts
    Dr. Moses Alfred Oladele is working on photocatalysis for CO2 conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist from Redeemer's University in Ede, Nigeria, came to Berlin in the summer of 2024 with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation and will work at HZB for two years.
  • Dr. Michelle Browne receives Daimler and Benz Foundation Fellowship
    News
    11.03.2025
    Dr. Michelle Browne receives Daimler and Benz Foundation Fellowship
    Michelle Browne heads a Helmholtz Young Investigators Group on electrocatalysis at HZB. She has now been selected as a fellow of the Daimler and Benz Foundation. She will receive 40,000 euros over the next two years and, in addition, access to an excellent research network.

  • Innovative battery electrode made from tin foam
    Science Highlight
    24.02.2025
    Innovative battery electrode made from tin foam
    Metal-based electrodes in lithium-ion batteries promise significantly higher capacities than conventional graphite electrodes. Unfortunately, they degrade due to mechanical stress during charging and discharging cycles. A team at HZB has now shown that a highly porous tin foam is much better at absorbing mechanical stress during charging cycles. This makes tin foam an interesting material for lithium batteries.