Optical innovations for solar modules - which are the most promising?

Symbolic picture with Microsoft Copilot.

Symbolic picture with Microsoft Copilot.

In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.

Photovoltaics (PV) has become one of the most cost-effective technologies for generating electricity. In November 2024, the world’s photovoltaic systems reached an installed capacity of two terawatts, and the growth rates and cost reductions are still enormous.

Expertise from 22 research institutions

‘At a recent workshop, we discussed how the optics community can contribute to the further growth of photovoltaics,’ says Prof. Christiane Becker, head of the Solar Energy Optics Department at HZB. Christiane Becker and her colleague Dr. Klaus Jäger then invited international experts to compile a comprehensive overview of PV technologies and optical innovations. In total, 27 renowned experts from 22 research institutions in 9 countries contributed to the review.

Most promising concepts

The article begins with an overview of the current state of photovoltaics on a terawatt scale. From this, the experts identify issues and topics, where the optics community can contribute  to enable large-scale deployment. ‘We have also identified a number of optical concepts that are currently only on the threshold of economic viability, but which hold the most promise for advancing PV technology,’ says Christiane Becker. These include optical innovations in the field of multi-junction solar cells, which have the highest efficiencies and therefore have great potential to further reduce the levelized cost of electricity.

Ecological aspects

Improved manufacturing processes using an eco-design approach and minimising the consumption of critical raw materials are also discussed. Another chapter is devoted to coloured solar modules as building integrated PV solutions. ‘Especially in cities, we need to use facades and other surfaces too for solar energy conversion, and of course, it does matter how the PV modules look. Such innovative solar modules allow sophisticated aesthetic solutions,’ says Becker. 

Christiane Becker and Klaus Jäger are convinced that this comprehensive review does not only help the scientific community, but also decision makers in research funding.

arö

  • Copy link

You might also be interested in

  • Sodium-ion batteries: New storage mechanism for cathode materials
    Science Highlight
    18.07.2025
    Sodium-ion batteries: New storage mechanism for cathode materials
    Li-ion and Na-ion batteries operate through a process called intercalation, where ions are stored and exchanged between two chemically different electrodes. In contrast, co-intercalation, a process in which both ions and solvent molecules are stored simultaneously, has traditionally been considered undesirable due to its tendency to cause rapid battery failure. Against this traditional view, an international research team led by Philipp Adelhelm has now demonstrated that co-intercalation can be a reversible and fast process for cathode materials in Na-ion batteries. The approach of jointly storing ions and solvents in cathode materials provides a new handle for the designing batteries with high efficiency and fast charging capabilities. The results are published in Nature Materials.
  • 10 million euros in funding for UNITE – Startup Factory Berlin-Brandenburg
    News
    16.07.2025
    10 million euros in funding for UNITE – Startup Factory Berlin-Brandenburg
    UNITE – Startup Factory Berlin-Brandenburg has been recognised by the Federal Ministry for Economic Affairs and Energy as one of ten nationwide flagship projects for science-based start-ups. UNITE is to be established as a central transfer platform for technology-driven spin-offs from science and industry in the capital region. The Helmholtz Centre Berlin will also benefit from this.

  • Almost 4,000 People at the Long Night of the Sciences at HZB
    News
    01.07.2025
    Almost 4,000 People at the Long Night of the Sciences at HZB
    Helmholtz-Zentrum Berlin was delighted to welcome nearly 4,000 visitors to its Adlershof campus for the Long Night of the Sciences. It was a fantastic celebration of science, and we thank all our guests for their great interest.