Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL

Das neue Instrument wurde im EMIL-Labor aufgebaut.

Das neue Instrument wurde im EMIL-Labor aufgebaut. © R. Garcia-Diez /HZB

Das Schema zeigt den Aufbau der Endstation, einschließlich der Probenumgebung, der Analysekammer und des Strahlengangs.

Das Schema zeigt den Aufbau der Endstation, einschließlich der Probenumgebung, der Analysekammer und des Strahlengangs. © HZB

An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.

Solarzellen, Katalysatoren und Batterien werden als Energiematerialien bezeichnet, weil sie Energie umwandeln oder speichern. Ihre Funktionalität basiert auf komplexen chemischen oder physikalischen Prozessen. Um diese Funktionalitäten zu verbessern, ist es entscheidend, die Prozesse zu verstehen, idealerweise während sie ablaufen, also durch In-situ- und operando-Untersuchungen. Eine neue Versuchsstation ermöglicht nun entsprechende Experimente. Sie steht im Energy Materials In-situ Laboratory Berlin (EMIL) an der Synchrotronanlage BESSY II.

Die „operando Absorption and Emission Spectroscopy on EMIL“ (OÆSE) liefert detaillierte Einblicke in die elektronischen und chemischen Strukturen von Materialien und Grenzflächen sowie deren Veränderungen während (elektro-)chemischer Prozesse mittels Röntgenabsorptionsspektroskopie (XAS) und Emissionsspektroskopie (XES).

Das Herzstück der OÆSE-Endstation ist eine modulare und flexible In-situ/Operando-Probenumgebung, die speziell auf die spezifischen Forschungsfragen für jedes Energiematerial zugeschnitten ist und sich an unterschiedliche Experimente anpassen lässt.

Um die Fähigkeiten der OÆSE-Endstation zu demonstrieren, untersuchte das Team um Raul Garcia-Diez und Marcus Bär in situ die elektrochemische Abscheidung von Kupfer aus einem wässrigen CuSO4-Elektrolyten mit weicher und harter Röntgenabsorptionsspektroskopie. Die Fallstudie zeigt, dass die neue Endstation wertvolle Einblicke in dynamische elektrochemische Prozesse bietet und somit ein besseres Verständnis komplexer elektrochemischer Systeme ermöglicht.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Industrial Research Fellow am HZB: Mehr Zeit für den Austausch
    Interview
    12.05.2025
    Industrial Research Fellow am HZB: Mehr Zeit für den Austausch
    Der südafrikanische Chemiker Denzil Moodley ist der erste Industrial Research Fellow am HZB. Er ist federführend am Projekt CARE-O-SENE beteiligt. Der Weg zu einem effizienten Katalysator für einen nachhaltigen Flugzeug-Treibstoff soll durch das Fellowship-Programm weiter beschleunigt werden. Im Interview berichtet er über das Projekt und darüber, warum es so entscheidend ist, dass Forschende aus Industrie und öffentlicher Forschung zusammen arbeiten.

  • Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.