Metallic nanocatalysts: what really happens during catalysis

This image taken with a scanning electron microscope shows rhodium-coated platinum nanoparticles on a conductive substrate. The crystalline facets are clearly visible in the polyhedral shape of the nanoparticles.

This image taken with a scanning electron microscope shows rhodium-coated platinum nanoparticles on a conductive substrate. The crystalline facets are clearly visible in the polyhedral shape of the nanoparticles. © Arno Jeromin, DESY NanoLab

This image illustrates the oxidation of the nanoparticles on the strontium titanate substrate: while the metallic rhodium (green) mixes with the platinum (blue) in the core of the nanoparticle (violet) and oxidises on the outside (brown), the small rhodium nanoparticles grow together on the substrate and oxidise more strongly.

This image illustrates the oxidation of the nanoparticles on the strontium titanate substrate: while the metallic rhodium (green) mixes with the platinum (blue) in the core of the nanoparticle (violet) and oxidises on the outside (brown), the small rhodium nanoparticles grow together on the substrate and oxidise more strongly. © Jagrati Dwivedi, DESY NanoLab

Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.

Nanoparticles measure less than one ten-thousandth of a millimetre in diameter and have enormous surface areas in relation to their mass. This makes them attractive as catalysts: metallic nanoparticles can facilitate chemical conversions, whether for environmental protection, industrial synthesis or the production of (sustainable) fuels from CO2 and hydrogen.

Platinum core with Rhodium shell

Platinum (Pt) is one of the best-known metal catalysts and is used in heterogeneous gas phase catalysis for emission control, for example to convert toxic carbon monoxide in car exhaust gases from combustion engines into non-toxic CO2. ‘Mixing platinum particles with the element rhodium (Rh) can further increase efficiency,’ says Jagrati Dwivedi, first author of the publication. The location of the two elements plays an important role in this process. So-called core-shell nanoparticles with a platinum core and an extremely thin rhodium shell can help in the search for the optimal element distribution that can extend the lifetime of the nanoparticles.

Experiments at BESSY II and DESY NanoLab

Until now, however, little was known about how the chemical composition of a catalyst's surface changes during operation. A team led by Dr Thomas F. Keller, head of the microscopy group at DESY NanoLab, has now investigated such crystalline Pt-Rh nanoparticles at BESSY II and gained new insights into the changes at the facets of the polyhedral nanoparticles.

The nanoparticles were first characterised and marked in their vicinity using scanning electron microscopy and atomic force microscopy at DESY NanoLab. These markers were then used to analyse the same nanoparticles spectroscopically and image them microscopically simultaneously using X-ray light on a special instrument at BESSY II.

The SMART instrument at the Fritz Haber Institute of the Max Planck Society enables X-ray photoemission electron microscopy (XPEEM) in a microscope mode. This makes it possible to distinguish individual elements with high spatial resolution, enabling the observation of chemical processes at near-surface atomic layers. ‘The instrument allows the chemical analysis of individual elements with a resolution of 5-10 nanometres, which is unique,’ says Thomas Keller. The investigation has shown that rhodium can partially diffuse into the platinum cores during catalysis: both elements are miscible at the typical operating temperatures of the catalyst. The mixing is enhanced in a reducing environment (H2) and slowed down in an oxidising environment (O2) without reversing the net flow of rhodium into platinum. ‘At higher temperatures, this process even increases significantly,’ explains Keller.

Different reaction rates

The reaction rates also depend on the orientation of the nanoparticles' facets. ‘They are particularly high on certain facets,’ emphasises Jagrati Dwivedi: ‘Our facet-resolved study shows that rhodium oxidation is highest on facets with many atomic steps, where the atoms are most easily bound.’ This detailed analysis of the oxidation behaviour will contribute to the further optimisation of such nanocatalysts, which can undergo irreversible changes during use.

arö

  • Copy link

You might also be interested in

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.